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Abstract

The paper studies a game of common interest played infinitely many
times between two players, one being aspiration driven while the other
being a myopic optimizer. It is shown that the only two long run sta-
tionary outcomes are the two static equilibrium points. Robustness
of long run behavior is studied to show that whenever the optimizer
is allowed to make small mistakes, players are able to coordinate on
the Pareto dominant equilibrium point most of the time in the long
run if the speed of evolution of aspirations is sufficiently fast. How-
ever, when only the aspiring player is allowed to make small mistakes,
achieving coordination is inevitable and independent of the speed at
which aspirations evolve.
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1 Introduction

The paper studies repeated interactions between two players using different
behavior rules in a strategic environment represented by a common inter-
est game where there are multiple pure strategy equilibrium points, and
the players face the problem of deciding which action to take in each pe-
riod. Some equilibria Pareto dominate others but playing these equilibrium
strategies may nevertheless involve risks arising out of the possibility of co-
ordination failure. Environments exhibiting such features are in abundance
in economics ( and social sciences in particular) and gain special attention in
models of strategic-complementarity of investment decisions. For example,
a low level of economic activity can sometimes be thought of as the out-
come of an economy wide coordination failure, in which several investments
do not occur because other complementary investments are not made, and
these latter investments are not forthcoming simply because the former are
missing. This also provides a potential explanation of why similar economies

behave very differently, depending upon their past economic ventures.

Even though such efficient outcomes (like the one where all firms in-
vest) are equilibrium points, there are reasons to doubt that they would be
chosen. For instance, the risk dominance criterion of Harsanyi and Selten
(1988) may select an equilibrium from which there is scope for drastic Pareto
improvement. Nevertheless, in a game of common interest, the Pareto dom-
inant equilibrium point seems “more compelling”. Many authors have tried

to derive it as the unique prediction for the repeated version of the game.!

We essentially study this problem of coordination failure faced by two
players, one being a myopic best-respondent while the other being aspira-
tion driven. In a model of investment, the use of different behavior rules

has some interesting applications. For example, we can imagine that the

! Balkenborg (1993), Aumann and Sorin (1989), Binmore and Samuelson (1997), to

mention a few.



working rules of management units differ across firms. In many instances,
the managers of some firms set profit targets and accordingly take their in-
vestment decisions. If their decisions meet such targets, they tend to take up
similar projects. Otherwise, they explore the possibility of expanding their
business in other directions. In many other instances, the management sets
short term goals and invests in projects which maximize their immediate
profit. Our paper can be used to study the level of aggregate investment
in situations where these two different management bodies interact. The
aspiration driven player is “naive” and uses the following simple behavior
rule. He has a payoff aspiration and takes actions. If an action yields a
payoff of at least the aspiration with which that action was implemented, he
keeps playing the same action. Otherwise, he switches actions with a pos-
itive probability. Furthermore, aspirations are updated by taking a simple

weighted average of past aspirations and payoff experience.

Bendor et al. (1995) study repeated games where both players are aspi-
ration driven but aspirations are static. They show that in games of com-
mon interest, players can generally attain individually rational pure strategy
Pareto efficient payoffs. Also, initial conditions play an important role in
the selection of long run outcomes. Karandikar et al. (1998) study 2 x 2
games repeated infinitely many times between two aspiration driven players
with evolving aspirations. They show that for sufficiently slow evolution of
aspirations and small trembles in the use of the aspiration updating rules,
both players are able to coordinate on the Pareto dominant equilibrium
most of the time in the long run. In a significantly different strategic set-
ting, Palomino and Vega-Redondo (1999) propose an aspiration based model
of “cooperation” where aspiring players drawn from a large population are
randomly matched every period to play a Prisoner’s Dilemma game. Their
aspirations are updated on the basis of population average of past payoff
experiences. They show that any long run outcome of the game displays

cooperative behavior by a positive (and always less than 1/2) fraction of the



population. Pazgal (1995) studies repeated play of mutual interest games by
satisficing decision makers and shows that for a high enough initial aspira-
tion level, there is a high probability of convergence to the Pareto dominant

outcome.

On the other hand, it is a well established result that if all players are
myopically rational, they will converge with probability one to some pure
strategy equilibrium point in any given game. Although this result is inter-
esting, it is somewhat intuitive. Moreover, it fails to add any further insight
on the issue of equilibrium selection. Aspiration based models clearly have
sharper predictions in the sense that they are able to find conditions under
which the Pareto dominant equilibrium point is selected most of the time in
the long run, as discussed above. Given this, we ask the following question:
what happens if a myopically rational and an aspiring player interact? One
may suspect that as two myopically rational players converge to an equilib-
rium point and as two aspiration driven players are able to coordinate in the
long run on their commonly preferred outcome, some convex combination of
these two behavior rules will demonstrate similar long run behavior. Firstly,
this assertion is not at all obvious and needs a proof. Secondly, and most
importantly, the question remains as to whether, and under what conditions
the players are able to achieve long run coordination on the Pareto dominant

equilibrium.

In the environment studied, players are not only “boundedly rational”
but also their thinking and reacting processes are very different. One player
is driven by disappointment while the other is driven by short sighted max-
imization. In this respect, the paper is the first of its kind in the existing
literature and demands the following remarks. Whenever one moves away
from models of rationality, the direction is somewhat arbitrary although not
unrealistic. That is any behavior studied must adhere to some consistent
thinking and reacting process. Nonetheless, if the choice of behavior is ar-

bitrary to the above extent, there is no reason to believe that when many



players interact, they all follow a common rule of thumb. Matching mod-
els with heterogenous populations is motivated exactly by this observation.
Such models predict on several occasions that heterogeneity of population
can be sustained in the long run. While population games are important,
there are numerous instances where a given set of players with different be-
havior rules interact repeatedly. As another example different from the one
of investment, consider a married couple. On all probabilities there are dif-
ferences in personalities between the man and the woman and some of these
differences stay even until death. Each day of their life may be summarized
by a game which is played only between themselves. Careful study of such
cases cannot be avoided, and is the central motivation of this project. We
show that

i) from any level of initial aspiration, the Pareto dominant equilibrium
point can indeed be achieved and that if the initial aspiration is sufficiently
high, players are more likely to be able to coordinate on the Pareto dominant
equilibrium in the long run, while with a relatively low initial aspiration, play
may converge to the Pareto dominated equilibrium;

ii) furthermore, there are no other long run outcomes.

Robustness of long run behavior is also studied. We perturb the deter-
ministic system by allowing players to make mistakes with positive proba-
bilities. There are two interesting observations to make.

1) We find that whenever we allow for at least the best-respondent to
tremble, as the probabilities with which players make mistakes tend to zero,
the commonly desired coordination is achieved most of the time in the long
run if the speed of evolution of aspirations is sufficiently fast.

2) Secondly, if we only let the aspiration driven player commit mistakes
but do not allow for any tremble on part of the rational player, players

successfully converge to coordinate? most of the time independent of the

2The term “coordination” will often be used to mean coordination on the Pareto dom-
inant equilibrium point.



speed of evolution of aspirations.

These are in sharp contrast with the result in Karandikar et al., where
sufficiently slow evolution of aspirations is necessary to obtain coordination.
The intuition behind this difference in the conclusions between the two mod-
els is roughly as follows. In our case, any experience of high payoffs increases
aspirations rapidly. Therefore, any subsequent experience with a low pay-
off disappoints the aspiration driven player to a greater extent. Thus, every
time the players enter a play of the Pareto dominated equilibrium point from
any other outcome that gives a relatively high payoff to the aspiring player,
he experiences a very high degree of disappointment and is therefore more
likely to experiment with the Pareto dominant action. This makes the ra-
tional player do the same in order to maximize her expected payoff from the
following round of play. Clearly, this enhances the possibility of achieving a
very high degree of coordination. On the other hand, when both players are
aspiration driven, in any outcome which is not a strategic equilibrium point,
whenever one player receives a high payoff, the other receives a low one.
Therefore, if we want to achieve a high degree of coordination, we need the
speed of aspirations to be sufficiently slow so that when in the subsequent
period they enter the Pareto dominated equilibrium, both players experi-
ence a high degree of disappointment and therefore prefer experimenting

with the Pareto dominant action.

The rest of the paper is structured as follows. Section 2 formally de-
scribes the environment and specifies the behavior rules which our players
are assumed to follow. Section 3 deals with the evolution of the states of the
game. Section 4 studies robustness of long run behavior. Finally the paper

concludes in section 5.



2 The Model

Consider the following normal form game T,

player 2
C D
player 1 C | 3,0 0,0
D | 6,0 0,6

where > 60 > 6 > 0. I' is a game of Common Interest and there are
two pure strategy equilibrium points (viz. (C,C) and (D, D) ) with (C,C)
Pareto dominating every other outcome.

T" is infinitely repeated between players 1 and 2. Player 1 is aspiration
driven while player 2 is a myopic best-respondent. Player 1’s state at period
t is given by his action A; in {C, D}, and his aspiration level a4 in [0, /3].
We do not allow aspirations to lie outside the convex hull of possible payoffs
of I'. This is more reasonable although allowing aspirations to lie outside
[0, 3] is not logically impossible.® Player 2’s state at period ¢ is given solely
by her action B; € {C,D}. Let E = {C,D}* x [0, 3] be referred to as the
state space of I', and denote by e = (A,B,«a) in E as a state of I'. Let
ut : {C, D}2 —{0,6,6,3} be the period ¢ payoff function for player ¢ = 1,2,
as defined by the above payoff matrix.

2.1 Behavior Rules

Player 1 has a payoff aspiration with which he begins playing the game. If
an action yields at least his aspiration, he keeps playing the same action. If
however an action disappoints him with a lower payoff, he experiments with

other available actions. Formally, player 1 behaves in the following way:
if utl > oy, then Ay = Ay
if uf < «, then A;y # A; with probability (1 —p),

where p € (0,1) indicates the inertia of the previous decision. We assume

p(+) to be strictly decreasing in the extent of disappointment, which equals

3Karandikar et al. studies the case where aspirations lie in R.



the signed difference between his aspiration and his payoff experience, a;—
uy, satisfying the following criteria:

(A.a) Satisfaction: p =1 if ay < u;

(A.b) Bounded Experimentation: p is in (p,1) if oy > u} for some p in
(0,1);

(A.c) Disappointment Driven: p is continuous and there exists K finite
such that for all x positive, we have 1 — p(z) < Kz, with p(z) > 0.

(A.a) says that if player 1 is satisfied with his current action, he plays the
current action in the subsequent period with probability 1; (A.b) says that if
disappointed with a particular action, he never rules out the disappointing
action from his choice set; and (A.c) implies that no matter how disappointed
he is, he limits his experiments with new actions although his tendency to

experiment with new actions increases with the disappointment.

Evolution of aspirations follows a simple weighted average rule over the

aspiration level and the payoff experience at the previous play. In particular,
a1 = Ay + (1 — Ny, (1)

where X in (0,1) is a parameter that measures the degree of persistence
of aspirations. For A close to 1 (the case for slow updating), the current
aspiration is not very sensitive to past payoff experiences, with A = 1 being
the case when the aspiration is static. On the other hand, for A close to 0 (the
case for fast updating), the current aspiration follows the payoff experience
very closely, with A = 0 being the case when the aspiration exactly equals

the previous payoff experience.

Player 2 is a myopic optimizer. She? is assumed to know the behavior rule
of player 1, and begins by predicting the current action of her opponent in
order to play a short-sighted best response to it that maximizes her current

payoff. Let ¢ in [0, 1] be the probability assigned by player 2 to the event

YThe use of gender is arbitrary.



that player 1 chooses to play C at period ¢. Let 2z; be the probability with
which player 2 plays C at period ¢t. Typically, z; will depend on ¢, given
the value of p(-) as evaluated at period ¢. We rule out the use of mixed
strategies by player 2 and take z; to be in {0,1}. This will not affect our
results in general and we will work with a simplifying behavioral assumption
that whenever player 2 is indifferent between her available actions, she keeps

playing her ongoing action with probability one.

In the following section, we will study the stochastic process generated
by the behavior rules of players over the state space F, and concentrate on

the existence and characteristics of stationary states.

3 Evolution of activity and long run analysis

The behavior rules of the two players induce state dependent probabilities
on the state space E. Let P(ei+1 | e, -..,e;) be the probability of being
in state e;y1 in E at period ¢ + 1, given that in past periods the realized
states were ey, ..., e;. Since P(eiy1 | €p,...,er) = Plegr1 | er), we can define
a Markov process over the state space E of I'. We call this process M(T").
As usual, a long run outcome of I' will be defined as an infinite sequence of

states in £ which occur once t tends to oco.

In the following theorem we show that repeated play of the equilibrium

points of I" are the only two long run outcomes.

Theorem 1 (C,C,[3) and (D, D, ) are the only two stationary states of
the Markov process M(I') and infinite constant sequences of either (C,C) or

(D, D) are the only two long run outcomes of T

The proof will involve the following four lemmas. The proof of the the-

orem along with those of the lemmas are to be found in the appendix.



Lemma 2 (i) (C,C,[0,/]) is an ergodic set of M(T') and (C,C,[3) is a
stationary state. (ii) (D, D,[0,0]) is an ergodic set of M(I') and (D, D,?)

18 a stationary state.

Denote by I (A, B) as the probability of a T- period run on the action
pair (A, B) starting at period ¢ and ending at period ¢t + 71 — 1.

Lemma 3 (i) Assume that at some period t > 0 we have (A¢, By) = (D, C).
Then, for any oy in [0, 3], we have

lim 117 (D, C) = 0.

T—o0

(11) Assume that at some period t > 0 we have (A¢, By) = (C, D). Then,

for any oy in [0, 5], we have

lim I17 (C, D) = 0.

T—o0

Lemma 4 There exists an € > 0 such that for any period t > 0 with oy in
0,0 +¢] and (A, By) = (D, D), we have

lim I (D, D) > 0.

T—oo

For any two subsets Fy, s of the state space E, denote by I} (E; +— Ey)
as the probability that from any state e in E; at time ¢t > 0, the process

moves for the first time to a state €’ in E9y at time T > t.

Lemma 5 For any period t > 0, we have

lim 1T ((C, D, [0, 8]) U (D, C, [0, 8]) — {(C,C,3),(D,D,6§)}) = 1.

T—oo

The intuition behind Theorem 1 is as follows. From lemma 2 we see that

for any ongoing value of the aspiration, once we enter a state where both

10



players play C, players get stuck in a repeated play of C' and over time the
aspiration of player 1 moves up until it converges to 3, the ongoing payoff
experience. We therefore converge to (C, C, ) which is a stationary state of
M(T). This is because starting from any initial aspiration that is at most
[ by assumption and getting a payoff more than this aspiration makes the
aspiration driven player stick to his strategy of C. Although his aspiration
evolves upwards, since A € (0,1), it cannot exceed  at any period, and
therefore he never gets disappointed by playing C. The best response of

player 2 remains fixed at C.

It may be of interest to point out here that when both players are aspira-
tion driven, lemma 1 remains true. However in that case it can be shown that
any state where the current payoffs equal current aspirations is a stationary
state. Therefore it follows that all action profiles are potential stationary
states. In our environment this is not true. To see this, we do not need the
theorem as it follows trivially from the following observation. In any normal
form game such that for any non-equilibrium outcome, every player has an
incentive to deviate (notice that I" satisfies this property), non-equilibrium
outcomes clearly cannot be stationary states in the presence of an optimizer.
However, in general it is not true that every stationary state is an equilib-
rium point. For example, consider a game with an outcome from where only
the aspiring player has an incentive to deviate. It may well be the case that
in a period such an outcome is observed, the payoff aspiration is satisfied.
Then this outcome, which is not an equilibrium point by construction, is
indeed a stationary state. Nevertheless, what is true in our model is that
every equilibrium point is indeed a stationary state. If this was enough, we
could do away with lemmas 3, 4, and 5. But how do we know that play
converges in the long run to one of these stationary states and that there
are no other forms of long run outcomes (such as limit cycles)? The last
three lemmas help us prove that constant sequences exhibiting play of either

(C,C) or (D, D) are the only two long run outcomes.

11



We begin with lemma 3. Suppose play begins with player 1 playing D
and player 2 playing C. If player 2 knows that a payoff of 8 satisfies player 1
(that is a < 0), she is sure that in the subsequent period, player 1 will keep
playing D. In that case, player 2 plays D with probability 1 and we move
to the action pair (D, D). In the case player 2 knows that player 1 will be
disappointed with the payoff of 6 (that is a > 6 ), she is not sure as to what
will be the subsequent action of player 1. Since player 2 is an expected payoff
maximizer, she attaches subjective probabilities to the subsequent actions
of player 1 and plays a best response to her prediction. Furthermore, since
the disappointment of player 1 decreases over time as he keeps experiencing
payoffs equal to 6, the probability that player 1 will switch and play C
decreases to a value such that it becomes optimal for player 2 to play D
with probability 1, and we move out of (D, C). Similarly, when play begins
in (C, D), for any level of aspiration, player 1 is disappointed except in the
case in which his aspiration is zero. When this is the case, player 2 knows
that player 1 will keep playing C' and therefore deviates with probability 1
to play C' and we are immediately out of (C, D). If not, player 1 experiments
with all his available actions. In this experiment, as long as he attaches a
very high probability (the case when he is extremely disappointed with his
current action C) of playing D, it remains optimal for player 2 in expected
terms to keep playing D. However, repeated experience of a zero payoff
(the only interesting case here) also reduces aspirations drastically. This
implies that a time comes when the probability with which player 1 plays
C is sufficiently high for player 2 to deviate and play C' with probability 1.

Thus, lemma 3 guarantees that if the ongoing action pair is either (C, D)
or (D, (), we eventually move out. This however does not imply that (C, D)
and (D, C) cannot be observed in any long run outcome because there still
remains the possibility of returning to play of (D,C) or (C,D) infinitely
often. It only establishes the non-ergodicity of the sets (D, C,[0,0]) and
(C,D,[0,3])-

12



We would like to have a similar result for the situation where both play-
ers play D. However, lemma 4 guarantees that both players playing (D, D)
forever has a positive probability of occurrence if aspirations are sufficiently
low at the time (D, D) is observed for the first time, but surprisingly not
necessarily lower than 6. Since infinite repetitions of (D, D) bring the aspi-
ration closer and closer to ¢, we eventually converge to the stationary state
(D, D,é). To see this observe that when the initial action profile is (D, D),
if the aspiration is sufficiently low, player 1 attaches only a small probability
of switching to C' as a low aspiration implies a low disappointment. Fur-
thermore, since the inertia with which player 1 keeps playing D is bounded
away from zero and the degree of experimentation is bounded from above,
the rate at which the probability of playing C' drops is fast enough. This
implies that we need only a few repetitions of (D, D) for player 1 to start
playing D with near certainty. As in all such cases, it remains optimal for

player 2 to keep playing D anyway, the result follows.

From lemmas 2, 3, and 4 we conclude that the Markov process M (T")
has the following properties:

() there are two ergodic sets, (C,C, [0, 5]) and (D, D, [0,6]);

(7) if « is in {0,6 +p! (%)}, then the probability of an infinite
run on the action profile (D, D) is positive; and

(74i) for any a in [0, f], infinite runs on action profiles (D, C) or (C, D)

is impossible.

Properties (7), (i7), and (iii) however do not guarantee that states where
the action pairs are either (D,C) or (C,D) cannot occur infinitely often
and we would like to rule out the cases where this happens. In this spirit,
lemma 5 is needed to guarantee that the two stationary states (C, C, ) and
(D, D,$) are also the only two global attractors of M(I'). Notice that as
(C,C,[0,5]) and (D, D, 0,4]) are ergodic sets, if there is any long run play
which does not include play of (C,C) and (D, D), then also (D, C) cannot

13



be included as otherwise (C,C) must be given a positive probability of oc-
currence. But since we are already in the long run, doing this would make us
enter (C,C, |0, ]) with probability one. This observation is very helpful as
it implies that the only remaining possibilities are infinite sequences of play
fluctuating between (C, D) and (D, D). However, such fluctuations cannot
go on forever as sooner or later aspirations drop towards 6 and we enter a
play of (D, D) with a < 6.

3.1 When player 2 is forward looking

It may be intuitively easy to see that if player 2 is forward looking and
patient, then she can always induce the aspiration of player 1 in a way that
he starts playing C' and that doing so is actually better for player 2. Thus
if player 2 is sufficiently patient, we can eliminate the “bad” ergodic set
(D, D,[0,6]). As an example, suppose we are in the set (D, D,[0,6]). If
player 2 is forward looking and sufficiently patient, she realizes that if she
can manage to increase the aspiration above 6, player 1 will eventually start
experimenting with action C. Since she knows that player 1 will never play
C as long as his aspiration is below 8, she starts playing C herself. With
probability one, this yields her a payoff of zero and a payoff of 6 to player 1.
She knows that repeated experience of 6 eventually brings aspirations above
6. When this happens, she might as well play D and disappoint player 1,
thereby inducing him to play C' with a positive probability. Will player 2
actually do this? Yes, if she is forward looking and sufficiently patient and
0 is sufficiently high relative to 6, because then her expected discounted

lifetime payoff is higher than getting é forever.

4 Robustness of Long Run Outcomes

The stochastic process studied in section 3 converges in the long run to play
of either (C,C) forever or (D, D) forever. One may suspect that these long

run outcomes may not be robust to either perturbations of the process or

14



to alternative specifications. Furthermore, although I' is payoff symmetric
between players, since the behavior rules used by the players are different,
robustness of these long run outcomes may depend crucially upon the sources

of such perturbations.

4.1 Trembling Rationality

Assume all the hypotheses of section 2 and suppose that at each period player
2 takes actions according to her best response function with probability
(1 —n), while with probability n she commits a mistake and chooses the
non-optimal action. This specification trembles the stochastic process to
what we call M"(T"). Since the state space FE is compact, by theorem 16.2.4
in Meyn and Tweedie (1993), for every n > 0, the trembled process M"(T)
converges strongly to a unique limit distribution f7, irrespective of the initial
state. Thus, introduction of mistakes guarantees a unique probabilistic long
run outcome. We will typically be interested in such limit distributions
when the probability of mistakes is close to zero (i.e. 7 — 0). To do this,
we use the following trick.> Let us denote by Q7 as the one-step transition
probability of the stochastic process conditional on the fact that the rational
player trembles with probability n > 0, and let P* denote the infinite-step
transition rule in the deterministic process M(T'). Let Q7o P denote the
composition of Q7 and P*°. The process 71712(1) Q"o P> is then “equivalent” to
},ig(l) M™(T"), but subjecting the rational player to tremble only once, followed
by the untrembled process thereafter. This in itself captures the idea of the
trembling probability being close to zero. The following proposition will be
helpful.

Proposition 6 The net {]“7}77 converges weakly to a distribution f on E

asn — 0 and is the unique tnvariant distribution of the process Q"o P*.

Proof. Application of proposition 3, proposition 4 and theorem 2 in

Karandikar et al.. m

?See Karandikar et al. for a similar use.

15



Since from section 3 we know that the untrembled process converges to
either (D, D, ) or (C,C, 3), it follows that the invariant distribution f of the
process Q"o P*° must be concentrated around these two states as well. What
probability weights will f attach to these states? In the following theorem,
we show that the two players are able to coordinate their actions and achieve
play of the Pareto dominant equilibrium point most of the time in the long
run if the aspiration follows the path of payoff experiences sufficiently closely,

implying a relatively fast evolution of aspirations.

Theorem 7 Let f(C,C,[3) be the probability weight assigned on the state
(C,C,B3) by the unique invariant distribution f of the process Q" o P> for

_1{ _B—6
n — 0. Then, f(C,C,3) =1 if X lies in the interval | 0,1 — P gﬁj;_g )

Proof. Denote I} ((A, B,«a) — (A', B',&’)) to be the probability that
the system starts at period t in some state (A, B,«) in E and transits at
period T" > t + 1 to some other state (A’, B’,’), when the rational player
commits a mistake only once at period t 4+ 1 with probability 7. Since by
theorem 1, (C,C, 3) and (D, D, ) are the only two stationary states of the

untrembled process P*°, it suffices to show that
I* ((D, D, 6) — (C,C, ) > 15° ((C, C, B) — (D, D, ¢)) -

Take any period ¢t > 0 such that (A, B, o) = (D, D, ). Then, Ay = D
and 241 = 1 > 0 by construction. Let Byyqy = C. Since 8 > §, we have
Q1 — u%_H < 0, implying that A;yo = D and z;9 = 0. Since this further
implies that (Asyo, Bi42) = (D, D), we have

a2 =X+ (1 —=X)8 >4, forall Xin (0,1).

1 Bg—0
Suppose A < 1 — u‘fj&ﬂl' Then, invoking the proof of lemma 4, it

can be shown that asy9 lies outside the interval [0,6 +pt (,@‘f-gfa)} and

therefore, Tlim HtT+3(D,D) = 0. Therefore, the interesting case is when
—00
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(Atys, Biys) is in the set {(C,C),(D,C)}. If (Aiys,Birs) = (C,C), by
lemma 2, we have (Ai134n, Biysin) = (C,C) for every n > 1. On the other
hand, if (A¢t3,Biys) = (D, C), we have a3 > a4q1. Following the above
reasoning, the only interesting case is when (A4, Bi14) is once again in the
set {(C,C),(D,C)}. We can now apply lemma 3 and claim 3 of lemma 5 to
show that

Hz?o ((Dva(S) = (C,C,B)) =1

What remains to be shown is that IIg° ((C,C, 3) — (D, D, 6)) < n. Let
us choose any period ¢ such that (A¢, Bt,at) = (C,C,3). Then, Ai11 = C
while 2z;4.1 = 1 —n > 0 by construction. Let us assume that By = D.
Since 3 > 0, we have a1 — utl+1 > 0 and Appo = C  with probabil-
ity p(AB) while Ayyo = D with probability 1 — p(A3). Suppose p(A\3) >
m. Then, Pr((A¢y2,Bit2) = (C,C)) = p(A3) > 0 and the result
follows as then II° ((C,C, ) — (D,D,§)) < 1. Suppose therefore that
p(A\3) < m. Then, Pr((Asy2,Biio) = (C,D)) = p(A\3) > 0. Let
us assume that (A¢y9,Biyo2) = (C,D). Then, apyo = A3 < M\3. Let
(Atin, Bien) = (C,D) for every n = 2,...N, for some N > 0. Then,
arn = AV3, and pAYB) > p(A¥16). By continuity of p(-) in N, there
exists an N* < oo such that p(AN 3) > m. Consider the probability
of a run on the action pair (C, D) from period ¢ + 1 to period N*. This is
given by Jﬁ p (A7) and is clearly positive. But this has the implication

T=t+1
that Pr((An«,Bn+) = (C,C)) > 0 as well. Therefore,

I ((C,C, B) — (D, D, 6)) <.

When player 2 commits a mistake with positive probability while the
current state is (C, C, [3), the probability of re-entering play of (C,C) is still
positive for any value of the speed of evolution of aspirations. All is required

is once play of (C, D) starts, it stays there for some periods until player 2
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again plays C. However, if the speed of updating of aspirations is sufficiently
fast and player 2 commits a mistake and plays C' while in (D, D, ¢), player
1 keeps playing D and the system re-enters play of (D, D) with player 1
experiencing a relatively large disappointment. This makes player 1 play C
which only enforces repeated play of C' by player 2 in every alternate period.
This leads to play of (C, C) at some period with probability one. Thus if the
speed of evolution of aspirations is sufficiently fast, a small tremble rules out
the Pareto inefficient outcome in the long run. Put in another way, if X is
sufficiently low then aspirations change fast. If (D, D, §) is the current state
and the rational player trembles to (D, ('), then the aspiration increases a
lot. So, the aspiration driven player will be highly disappointed by playing D
whenever the system re-enters play of (D, D) and will therefore deviate to C
with very high probability. To that, the rational player will “best-respond”
by playing C and the new stationary state is reached. On the other hand,
if the initial state is (C,C, 3) and there is a tremble, then there is still a
positive probability of playing (C,C) again. That will not disappoint the
aspiration driven player, so that the probability of moving to play of (D, D)
is less than 7. Mention must be made here of the fact that in case of both
players being aspiration driven, such perturbations lead to play of (C,C) in
the long run with probability one only if A is very close to 1, that is when

aspirations evolve very slowly.

4.2 Mistaken Aspiration Updating

Let us now perturb the model by allowing only the aspiration driven player
to make mistakes in forming current aspiration levels with probability ~ > 0.
Thus, with probability (1 — ), aspiration levels are formed according to the
deterministic rule as in Eq.(1), while with probability ~, the updated de-
terministic aspiration level is perturbed according to some density function
which depends on the current value of the aspiration. We deal with the

case where at no period can the aspiration lie outside [0,3]. Denote by
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M7 (T') as the corresponding perturbed process. Invoking the discussion at
the beginning of subsection 4.1, it will be enough to study the case where
the aspiration driven player is made to make a mistake only once with prob-
ability v and then the process is left unperturbed thereafter. We will call
such a process Q7 o P°. The following result is relatively easy to see but
nevertheless, surprising. It shows that the players achieve coordination on
the Pareto dominant equilibrium point most of the time in the long run

irrespective of the speed of evolution of aspirations.

Theorem 8 Let g(C,C,[3) be the probability weight assigned to the state
(C,C,B) by the unique invariant distribution g of the process Q7 o P* for
v — 0. Then g(C,C,[3) =1 for any X in the interval (0,1).

Proof. We use the notation as developed in subsection 4.1. It is once

again sufficient to check that
I7* ((D, D,6) = (C,C, 3)) <T* ((C,C, ) = (D, D, )) .

However, since while at (C, C, [3), aspirations can only fall below the current
payoff experience, II?° ((C,C, 3) — (D, D,$)) = 0 and therefore it suffices
to show that II?° ((D, D, 6) — (C,C, 3)) > 0 which is trivial. m

Since the aspiration driven player cannot by mistake choose a level of
aspiration which exceeds the maximum payoff he can obtain in the given
game, if both players coordinate, no matter what is the level of aspiration
(mistaken or otherwise), the aspiration driven player continues to play C.
Given this, the rational player never deviates to play D. Thus once the
system enters the play of (C,C), it never leaves it. However, while at the
stationary state (D, D,d) of the untrembled process, the aspiration driven
player is allowed to increase his aspiration with positive probability. In this

case a time comes when (C,C) is played with positive probability.

SQur conjecture is that if we allowed aspirations to lie in R, as in Karandikar et al., we
would obtain a similar result as in theorem 7.
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4.3 Simultaneous Mistakes

Assume finally that both players make mistakes with positive probabili-
ties. The description of mistakes is identical to those in subsections 4.1
and 4.2. We introduce the following notation. Given the definition of
17 (A, B,a) — (A, B',d)) as before, define P! ((A,B,a) — (4, B',d))
as the probability that the system in the untrembled process starts at pe-
riod t at some state (A, B,«) and transits to possibly some other state
(A, B', ) for the first time at some future period T > t. Therefore, P} (-)
is the probability of a T'— period transition path for the untrembled pro-
cess. As before, the symbols II%° (-) and P (-) will denote II! (-) and P (-)
respectively for T" — oo. Using the following theorem, we establish an in-
teresting observation: the condition for successful coordination, whenever
the rational player trembles, is independent of whether the aspiring player

is allowed to commit mistakes or not.

B+6—0
the long run both players play C' most of the time.

Theorem 9 If \ lies in the interval (O, 1—pt < 59 ) /(0 — 6)), then in

Proof. As before, it is sufficient to check that
I;° ((C,C, 8) = (D, D, 6)) <II;* (D, D, 6) — (C, C, B)) -
Suppose we are at some period ¢ such that (A, By, a:) = (C,C, 3). Then,

H?((C,C,B)H(D,D,(s)) = (I_W)UPtoo((CvaB)'_)(Dvaé))
'HTVPtOO ((Cv D7 [076)) = (Dva(S)) .

Invoking theorem 7, it can be shown that
P ((C,D,p) — (D, D,6)) <1.
Furthermore since

B (G, D,[0,8)) = (D, D,8)) < 1,
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we have

II° ((C,C,B8) — (D, D,6)) < (A—=v)n+my
Hence, it suffices to show that
117° (D, D, 6) — (C,C, 8)) > 1.

Now,

I° (D, D,6) = (C,C.5)) = mP((D,C,(8,0]) — (C,C, B))
+ (1L =) nF* ((D,C,6) = (C,C, 5))
+ (=)A= (D, D, (6, 8]) = (C, G, 5)) -

Again, by theorem 7, if A lies in the interval (O, 1—p! (,@igfe) /(60— 6)),

we have
P ((D,C,(8,8)) = (C,C,3)) = = ((D,C,6) = (C,C, 5)) = 1,
and since by lemma 4, it can be shown that
B (D, D, (8,8]) = (C,C,3)) >0,
we have

I;° ((D, D, 6) = (C,C,5)) = n+ 1 —n)y7(D,D,(6,06]) — (C,C,5))

> .

Start at a situation where both players play C' and the aspiration level is
exactly equal to 3. Suppose only the rational player makes a mistake and we
are out of (C,C). With this mistake probability, the system may enter play
of (C, D) with aspirations still equal to 3 > 0. The other possibility is when
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both players make mistakes. The rational player mistakenly plays D while
the aspiration driven player mistakenly reduces his level of current aspiration
below (. It has already been discussed why the probabilities of re-entering
(C, C) for both the cases remain strictly positive. Any other possible type of
mistake keeps the system in the ergodic set (C,C, [0, 5]) and thus becomes
irrelevant in the proof. On the other hand, if we start at a situation where
both players play D and the aspiration is exactly equal to 9, the aspiration
driven as well as the rational player can make mistakes. The intuition behind
why P ((D,C, (8,8]) — (C,C, 3)) and P ((D,C, ) — (C,C, 3)) are both
equal to one when the speed of evolution of aspirations is sufficiently fast is

explained in the discussion following theorem 7.

5 Concluding remarks

It follows from theorems 7, 8, and 9 that if only the aspiration driven player
makes mistakes, long run coordination on the Pareto dominant equilibrium
point is achieved independent of the speed of evolution of aspirations. How-
ever, this speed comes into play only when the optimizer is allowed to trem-
ble irrespective of whether the aspiring player makes mistakes or not. In
such cases note that the upper bound on A (that is the minimum speed)
required to obtain long run coordination depends crucially upon the exact
cardinal values of the payoff matrix and the intertia function p(-). To see

this, consider the following two examples.

Example 10
player 2
C D
I': player 1 C | 4,4 0,3 [
D | 3,0 1,1

22



Let \] denote the upper bound on A required to obtain long run coordination

in this game. It is easy to see that

-1
] p—(1/2)
=1—-—-.
Al 5
Example 11
player 2
C D
Ty player 1 C | 10,10 0,3 [
D | 3,0 1,1

Let X5 denote the upper bound on A required to obtain long run coordination

in this game. Then,

Nt}

If the same aspiration driven player plays I'; and I's with a best respon-
dent, will the players succeed in achieving coordination in both the games
in some distant future? Notice that for any given inertia function p(-), we
have A5 > A]. From what we have established in this paper, we can con-
clude that if A lies in the interval (0, A7), the players will certainly succeed
in achieving coordination in both I'; and I'y. On the other extreme, if A lies
in the interval (A5, 1), they may fail to do so in both occasions. However, it
may well be the case that A falls in the interval (A],\3). Then, the players
will certainly achieve coordination in I's, while they may not be able to do
so in I'1. To summarize, it seems intuitively clear that rational and aspiring
players tend to achieve coordination on Pareto dominant equilibrium points
in games where the “opportunity costs” of not doing so are extremely high.

More on these issues are reserved for future research.

An interesting extension of this paper would be to study population dy-
namics where players are randomly matched from a heterogenous population
consisting of aspiring and rational agents to play a common interest game.
Will the aspiring population survive and possibly grow in size, or will they

be made extinct by the competitive optimizers?
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Appendix
Proof of Theorem 1:

Proof of Lemma 2.

(i) Take any ¢ in [0, 5] and any period ¢ such that (A, By) = (C,C),
implying that u} (A, By) = 8 > ay. Then, p(ay — uf(Ay, By)) = 1. Since
zi+1(1) = 1, and for any period 7 > ¢t such that (A-,B;) = (C,C), with
A € (0,1) we have p(a; — ul(A., B;) = 1, ergodicity of (C,C, [0, 3]) is es-
tablished. Furthermore, lim; o (C,C, o) = (C,C, 3). Therefore, (C,C, )
is a stationary state.

(ii) Take any a; in [0,6] and any period ¢ such that (A, B;) = (D, D),
implying that u}(As, Br) = § > ay. Then, p(ow — ui (A, Bt)) = 1. Since
then, z11(1) = 0, and for any period 7 > ¢ such that (A.,B;) = (D, D),
with A € (0, 1), we have p,(a; —ul(A;, B;) = 0, ergodicity of (D, D, [0,¢]) is
established. Furthermore, lim;_,oo(D, D, oy € [0,6]) = (D, D, ). Therefore
(D, D, $) is a stationary state.

|

Proof of Lemma 3.

(i) Suppose a; < #. Then the result is immediate as for any period
T > t, zr = 0 while p (ozT — ui) = 1. So suppose oy > 6. Then for any
period T > t,

plar—0)>(B—-6)/(B+6-10)
implying that z, = 0. Given any T" > t, if we want to set z; =1 for every
T in [t,T — 1], we need

plar=0) < (B-0)/(B+6-0).

This in turn would imply that
T

[Tp(ar—0) <((B—6)/(B+5-0)".

t
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Since
dim ((B-6)/(B+8-0)" =0,

it is easy to see that TILIEOHtT(D, C)=0.

(ii) Define the variable 2; = oy — u;. Then, for any x; and any period
t > 0 such that p(z;) > 6/(8+ 6 — 0), if (Ai—1,B;—1) = (C, D), we have
z = 1. Furthermore, since for any period ¢ > 0 such that (A;, B;) = (C, D),
we have uj = 0, it follows that z; = a;. Thus for any period T' > t, we obtain
ar = Aay. Since A € (0,1), it follows that TILIEOQT = 0. By continuity of
Moy in T and the fact that p=' (6/(3 + 6 — 6)) > 0, there will exist a period
T* < oo such that for any period T > T*, we have ay < p~! (§/(8+ 6 —0))
implying that pr(xzr) > 6/(8+ 6 — 6).

|

Proof of Lemma 4.

For any a; < 6, the result is immediate as in part (i) of lemma 2. So

suppose a; > 6. Then for any period 7 > ¢, we have z, = 0 if and only if

B—0
&>
plar=8) 2 5575
Observe that for any o, in [0, J], if
6—0
— >
plar=0) 2 55—

then for any o/. < a,, we have

p(a)—6)>(3-0)/(B+5-0).
We need to construct the set [0, + ¢], for some ¢ > 0, such that for any «
in [0,6 + €], we have

30

pla=0252 55
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But this implies that

—0
a=b < p7 <ﬁf—6—9>

o B0

Set ¢ = p 1 <%) Then for any a; < § + ¢, we have p(a; — ) > p(e).
Since ar41 < ar, we have (A, B;) = (D, D), and therefore we only consider
the set [0,6 +¢) C [0, 5]. By A.c, we know

PO (g = 8)) > 1= KX (a, =) for any 7>t

Consider the function f(y) = log(1 —y). By Taylor’s expansion, if y > 0

and sufficiently small,
fy)=—y+v2/24+{...} >—-2.
Thus,
log(1 — KX Yay — 6)) > —2KX" (a; — 6).
This implies that

logp(\™ Hay, —6)) > log(1 — KX Yo, —6))
> 2K Y a, —6).

Since by A.c,

ZK)\T_l(aT —6) =Ko, —6)/(1 =) < o0,
we have > —2K\ " !(a; — §) > —oo. Thus,

Zlogp()\Tfl(aT —0)) > Z 2K\ Ha, —6) > —c0.
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But

Zlogp()\Tfl(aT —6)) =log Hp()\Tfl(ozT —9)),
t ¢
implying that log [[ p(A"™*(a;; — §)) > —oo0 and therefore [[ p(A\""! (e, — 6))
> 0. This implies that lim 7 (D, D) > 0.
|

Proof of Lemma 5.

The Lemma is proved by contradiction. Denote by (A, B)* to be the set
of all possible sequences of action profiles realized in the long run. Thus,

(A, B)* is the set of all possible long run outcomes of I". Define
£ {(07 D) Y (‘D7 C) Y (D7 D)7 (07 C)}

as the subset of long run outcomes in (A4, B)* such that each one of the four
pairs of action profiles appears infinitely often. By lemma 2, if there exists a
long run outcome ¢ in (A, B)* such that the action pairs (C, D) and (D, C)
are both in ¢, then (C,C) cannot be in ¢ and therefore we conclude that
c{(C,D),(D,C),(D,D),(C,C)} =0. Let

L£{(C,D),(D,C),(D,D)} C (A, B)*

be all possible elements of (A, B)* containing each (C, D), (D, C) and (D, D)
infinitely often and no other element.

Claim 1: £{(C,D),(D,C),(D,D)} = 0. To see claim 1, suppose there
exists an ¢ in L{(C,D),(D,C),(D,D)}. For any period ¢ > 0 such that
(A4, By) = (D, C), since we are in ¢, the aspiration level cannot lie outside
[0,60]. Thus, p (at — utl) = 1. Let B; = C for the periods 7 = t+1,t42, ..., t+
k, for some k. It is easy to check that there exists 1" such that at any period
T =t+ T, we have Bjyp = D. Since ¢ is in L{(C,D),(D,C),(D,D)},
there exists 7" such that for all T > T”, we have a,4p in [0,0]. There
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are two possibilities at this stage. If § < § + ¢, then by lemma 4, we have
Tli_I)T;OH;FJrK(D, D) > 0. But this, by lemma 2, implies that (C, D) and (D, C)
does not belong to £. On the other hand, if § > ¢ + ¢, then 2,7 = 1 and
pra1 (Qrpr — 8) < 1, implying that Pr (A7, Bri7) = (C,C)] > 0, thus
contradicting (by lemma 2) with the fact that (C,C) is not included in 4.

Let
L{(C,D),(D,D)} C (A,B)*

be all possible elements of (A4, B)* containing each (C, D) and (D, D) and
no other element.

Claim 2: L{(C,D),(D,D)} = (0. To see this, suppose by passing to
contradictions, we find an ¢ in £{(C,D),(D,D)}. Then, for every period
t > 0 such that (A¢, By) occurs in ¢, there exists €(t) > 0 with ay < § + €(t),
and there exists a period t* such that ay= < 6. Since for every t > t*, we

have oy < 6, there exists a T > t* such that
zrs1(plaps =6 | (A, Br«) = (C, D)) =1,

where the expression p(ar+ — 6 | (Ap+, By+) = (C, D)) denotes the value of
p(-) at period T* + 1, given that at period T* the realized action profile is
(C, D). Since ¢ isin L{(C, D), (D,C),(D, D)}, for every period T' > T*, we
have (Ar, By, ar) to belong to (D, D, |0,6]). By lemma 2, this contradicts
with (C, D) being in /.

Define similarly the set £{(D,C),(D,D)} C (A, B)".

Claim 3: L£{(D,C),(D,D)} = (. The proof of this claim follows di-
rectly from the proof of claim 1.

Finally by lemma 3, (A, B)* = L{(C,C), (D, D)} and the result follows
by lemma 2 and lemma 4.

This completes the proof of the theorem. mm
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