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Abstract

The concept of coalition proof Nash equilibrium was introduced by Bern-
heim, Peleg, and Whinston [5]. In the present paper, we consider the repre-
sentation problem for coalition proof Nash equilibrium: For a given effectivity
function, describing the power structure or the system of rights of coalitions
in society, it is investigated whether there is a game form which gives rise to
this effectivity function and which is such that for any preference assignment,
there is a coalition proof Nash equilibrium.

It is shown that the effectivity functions which can be represented in coali-
tion proof Nash equilibrium are exactly those which satisfy the well-known
properties of maximality and superadditivity. As a corollary of the result, we
obtain necessary conditions for implementation of a social choice correspon-
dence in coalition proof Nash equilibrium which can be formulated in terms
of the associated effectivity function.
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1 Introduction

The theory of implementation is concerned with the construction of rules for choice
of alternatives in a society such that the equilibrium behavior of the individuals
results in choices satisfying certain, preassigned properties. The implementation
problem in its classical formulation, as found e.g. in Hurwicz [10] and Maskin [11],
starts with a social choice function or correspondence and consists in the design of
a game form, such that for all conceivable assignments of preferences to individuals,
the equilibrium outcome of the game coincides with the outcome prescribed by the
social choice correspondence.

In the characterization of social choice rules which are implementable in coop-
erative equilibria, the concept of an effectivity function introduced by Moulin and
Peleg [12] turned out to play an important role. An effectivity function is a formal
description of a power structure in a society; it describes for each coalition alterna-
tive subsets of alternatives such that the coalition can force outcome to belong to
these subsets. There are obvious ways of associating effectivity functions with social
choice correspondences and game forms, and these effectivity functions will coincide
in some important cases.

It may actually be argued, that the effectivity function is a concept of consid-
erable independent interest. Indeed, it may be interpreted as a specification of the
rights of the coalitions in society; the fact that a coalition of individuals has a right
to demand that society’s choice belongs to a particular subset of the alternatives
may be described by effectivity of the coalition for this subset. Thus, effectivity
functions describe systems of rights in the sense of Gardenfors [8] or constitutions
(cf. Peleg [15]).

Given an effectivity function, the representation problem (for a particular so-
lution concept) consists in finding a game form with which the given effectivity
function is associated, and such that for any preference profile, there exists an equi-
librium (of the type considered). If the representation problem has a solution, then
the specifications of rights described by the effectivity function may indeed be re-
solved in society by equilibrium behavior within some given rules, namely those of
the game form. As a by-product, one obtains a social choice rule, namely the equi-
librum outcomes at any profile, which is implemented by the game form, and which
in interesting cases has the same effectivity function. The work by Moulin and Peleg
[12] on implementation in strong Nash equilibrium may be restated in these terms:
If an effectivity function satisfies the properties of maximality (see section 4 for a
definition) together with another one called stability, then it has a representation in
strong Nash equilibrium.

In the present paper, we consider the representation problem in another and
weaker equilibrium, namely that of coalition proof Nash equilibrium introduced by
Bernheim, Peleg, and Whinston [5]. Loosely speaking, a choice of strategies by
the individuals is a coalition proof Nash equilibrium if no coalition can find another
strategy which gives a better outcome for its members given the choices of the others,



provided that none of its subcoalitions defect from the new strategies in order to
achieve something still better.

The above naive description does not quite capture the essence of the definition;
the notion of a defection is not made clear. To do that, one has to define coalitional
improvements in a recursive way as it will be done in section 2 below. Note that
although coalition proof Nash equilibrium might be considered as a cooperative
solution concept, it is non-cooperative in its nature; it allows only for such coalitional
actions which are self-enforcable since it is never in the interest of a subcoalition to
defect.

In the present paper, we give a characterization of the effectivity functions which
have a representation in coalition proof Nash equilibrium. It is shown that the prop-
erties of maximality, and superadditivity are both necessary and sufficient conditions
for an effectivity function to be represented in coalition proof Nash equilibrium.
These conditions on the effectivity function, which imply that it may be consid-
ered as the power structure inherent in a coalition proof Nash implementable social
choice correspondence, are strictly weaker than the corresponding conditions related
to strong Nash equilibrium as treated in Moulin and Peleg [12]. This is as it should
be, since strong Nash equilibrium is a stronger concept than coalitional proof Nash
equilibrium. But it is important to notice that the conditions are really quite weak;
thus, representation in coalition proof Nash equilibrium is something which must
obtain very generally.

In this work, we consider the effectivity function as the primitive concept of the
analysis of implementation. The effectivity function is a description of power struc-
ture which does not exploit the notion of preference profiles. However, several social
choice correspondences may give rise to the same effectivity function, being different
representations of the same power structure. What we show is that if the effectivity
function satisfies the three conditions of superadditivity, monotonicity, and maxi-
mality, then at least one of the social choice correspondences which represent the
effectivity function is coalition proof Nash implementable. The effectivity function
characterization does not therefore give us a method of checking implementability
on the particular social choice correspondence, but it allow us the determine whether
there is an equivalent social choice correspondence — equivalence being defined in
terms equality of underlying power structure — which is implementable.

The paper is organized as follows: In section 2, we give the definitions of the
necessary game theoretical concepts, including that of coalition proof Nash equilib-
rium. In section 3 we define implementation in coalition proof Nash equilibrium,
and in section 4, effectivity functions are introduced and discussed, and we establish
the first (necessity) part of our characterization result. In section 5, for a given
effectivity function satisfying the properties of maximality, monotonicity, and su-
peradditivity, we consider a notion of cooperative solution which in a certain sense
generalizes the core of an effectivity function as discussed in Moulin and Peleg [12].
This solution concept is used in section 6 to define a particular game form. In sec-
tion 7, this game form is shown to represent the original effectivity function, thereby



establishing the sufficiency part of our characterization theorem. A final section 8
contains some concluding remarks as well as a discussion of other contributions to
the literature and their relation to the present work.

2  Coalition Proof Nash Equilibria

In this section, we recall the definition of coalition proof Nash equilibria (Bern-
heim, Peleg, and Whinston, [5]) and discuss some simple properties of this solution
concept.

Let N ={1,...,n} with n > 2 be a set of players. A coalition is a nonempty
subset of N. We denote by 2V the set of all coalitions. If S € 2V and for each
i € S, D' is a nonempty set, then we denote by [[;cg D' = D the Cartesian
product of the sets D,

DEFINITION 2.1 An n-person game in strategic form is a 2n-tuple
[= (3. 8% A R,

where X' is a nonempty set for every 1 € N, and h' is a function from XV to R for
all1 € N.

Let I' = (X',..., X% k', ... h") be an n-person game in strategic form. Then
Y is the set of strategies of player 7, i € N, and h' is i’s payoff function for every
1€ N.

We now recall the definitions of Nash and strong Nash equilibria.

DEFINITION 2.2 Let I' = (X1, %" AL ... h"™) be an n-person game, let o €
YN, and let S € 2V, Then 7° € ¥° is an improvement of S upon o if

hi(TS, UN\S) > hi(aN)
foralli e 5.

DEFINITION 2.3 Let T = (X1, ..., X" k', ... h") be an n-person game and let o €

YN, Then oV is a Nash equilibrium (NE) of I if no 1 € N has an improvement upon
N

o,

DEFINITION 2.4 Let T = (X1, ..., X" k', ... h") be an n-person game and let o €

YN, Then oV is a strong Nash equilibrium (SNE) of T if no S € 2V has an im-

provement upon o',

The foregoing definitions are entirely standard, but now we proceed to consider
another solution concept, namely that of coalition-proof Nash equilibrium (Bern-
heim, Peleg, and Whinston [5]). We start with an informal discussion:



Let T'= (3',..., Y%A, ... h") be a game in strategic form and let ¥ € ¥V, An
improvement 7° upon o” is “self-enforcing” or “self-supporting” if no subcoalition
T of S has an incentive to deviate from it. Clearly, if S is a one-player coalition

S

then 77 is self-supporting. However, improvements of larger coalitions may not be

self-supporting as can be seen from the following example.

EXAMPLE 2.5 Let I' = (X!, X% AN A?%), where X! = {0,053}, ¥* = {07,030},
and h' and A% are given by the following matrix:

T LD B0 (L0
ol (0,0) (2,2) (0,0)

First, let o = (0, 02). Then 7V = (o}, 0?) is a self-supporting improvement of the
coalition N upon oV. Indeed, 7V is a NE. Now, let xV = (0l,02). Then pV is an
improvement upon 7. However, 1 is not self-enforcing. Indeed, player 1 benefits

by deviating.

The notion of a self-supporting improvement is made precise by the following
definition.

DEFINITION 2.6 Let I' = (X',... X"kt ... k™) be a game in strategic form, let
oV e XN and let S € 2V. An internally consistent improvement (ICI) of S upon
o is defined by induction on |S|, the number of members of S, as follows: (i) If
|S| = 1, that is S = {i} for some1 € N, then 7° € ¥ is an ICI of S upon o if
Ri(rt, o N > (o) (ie. if 70 is an improvement upon o ). (i) If | S| > 1 then
75 € ¥5 is an ICI of S upon oV if (a) 7° is an improvement of S upon oV (see
Definition 2.2), and (b) if T C S and |T| < |S| then T has no ICI upon (75,0N\5).

Now we can define the equilibrium concept which is central in this paper:

DEFINITION 2.7 Let ' = (X%, ... X% k' ... k™) be a game in strategic form. Then
oV € ¥V is a coalition-proof Nash equilibrium (CNE) if no S € 2N has an ICI upon
oV,

REMARK 2.8 In the original definition of a CNE in Bernheim, Peleg, and Whinston
[5], the concept of an ICI was not used; instead, the equilibrium was defined induc-
tively using self-enforcing strategy n-tuples, where self-enforcing means that there
are no [CI’s of proper subcoalitions. The two ways of defining the equilibrium are
obviously equivalent; we have opted for the present one since it is more convenient
for the applications to follow.

EXAMPLE 2.9 Let I' = (¥, %% At h%), where ¥¢ = {oi, 0%}, i = 1,2, and h' and

h? are given by the following matrix:



o o
ol (L1) (0,0)
ol (0.0) (0.0)

Then o¥ = (o}, 0%) is a CNE. However, the NE p¥ = (¢}, 02) is not a CNE. Indeed,
o is an ICT of N upon pV. Note also that in the game of Example 2.5, 0¥ = (o}, 0})

is a CNE of I'. However, oV is not a SNE.

REMARK 2.10 Let I' = (X*,... X" k' ... k") be a game in strategic form. Then
every CNE of I' is a NE of I', and every SNE of I" is a CNE.

There are as far no general existence results available for the CNE’s, but in the
special case of games with only two players, some results may be obtained; first of
all, we notice that if ' = (X! X% At h?) is a 2-person game, then o € XV is a
CNE iff (i) oV is a NE, and (ii) there is no NE p such that h'(¢™Y) > h*(o) for
1 =1,2.

THEOREM 2.11 Let I' = (X', X% At h?) be a 2-person game. If
(i) ¢ is a compact metric space, 1 = 1,2,
(i1) XN is a topological space with the product topology,
(iii) h' is continuous, 1 = 1,2, and
(iv) T' has a NE,
then I' has a CNE.

The proof of Theorem 2.11 is left to the reader.

COROLLARY 2.12 Let I' = (X1, X%k h?%) be a 2-person game. If |X'] < oo, 1 =
1,2, and I' has a NE, then I' has a CNE.
The following example shows that there exist 3-person games having no CNE.

Example 2.13. Let T' = (31,22, 33, At R2 A%), where X' = {oi, 04}, 1 = 1,2,3,

and h', 1 =1,2,3, are given by the following pair of matrices:

o? o2 o2 o2

ol 0,00 —1,—1,0 ol 1,1,—k 0,0,—k

ol —1,-1,0 1,1,0 ol 0,0,—k —1,—-1,1
o o3

It can be showed that if 0 < k < 1/8, then oV = (¢},0% 0}) is the only NE of I'*,
but o™ = (o1,0%, 07) is not a CNE. Indeed, (o}, 02) is an ICI of {1,2} upon o".

We conclude this section by noticing that if improvements of coalitions in the
game [' can be supported by binding agreements, then every improvement may have
a destabilizing effect. In that case only SNE’s are equilibrium choices. However, we
recall that binding agreements, or contracts, are possible only in cooperative games
(see, e.g., Section 9 of Aumann [4]). In this paper we consider only non-cooperative
games, so that binding agreements are not available in our framework.
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3 Coalition Proof Nash Consistency

In this section, we continue our introductory description of the problem, introducing
the notions of game forms and consistency.

Let A be a finite set of m alternatives, m > 2. A linear order on A is a complete,
reflexive, transitive, and antisymmetric binary relation on A. We denote by L the
set of all linear orders on A. Let N = {1,...,n}, n > 2, be a set of players.

For any set D, the set of all subsets of D is denoted P(D), and we write P?(D)
for P(P(D)). The set of all nonempty subsets of D is denoted 27.

For R € L a linear order, we write x Ry for the expression “x is better than or
equals y in the order R”. If B,C € 24, we write BRC for xRy, all x € B,y € C. If
B is a subset of A, R|B denotes the linear order on B induced by R.

Let S € 2V, An Sprofile is a map R® : S — L. We write R for R%(:),7 € S, so
that R® = (R');cs. An N-profile is called a profile and written RN = (R,... R").
We identify RN with (RS, RN\%) for all S # 0, N and profiles RV,

DEFINITION 3.1 A game form is an (n + 1)-tuple G = (2,.... X" 7), where ¥*
is a nonempty set for every i € N, and m : ¥V — A is a function. We assume
throughout that 7 is onto.

If G =(2Y...,8%m), then X¢ is the set of strategies of player 7, 1 € N, and 7
is the outcome function.

To define a game from a game form, we need the preferences of the players.
For convenience in comparison with the game theoretical concepts of section 2,
we introduce utility representations of the preferences: Let R € L. A function
u: A — R is a utility representation of R if for all z,y € A,

xRy iff u(x) > u(y).

It is trivial that there exist utility representations for any R € L. Moreover, if u
and v’ are utility representations of R, then each is a monotone transformation of
the other one.

DEFINITION 3.2 Let G = (3Y,... %% 7) be a game form and let RN € LY be a
profile. A game T is associated with G and RN f I = (Z',.... X"kt ... "),
where each b is defined by

for some utility u' representing K.

Since we shall be concerned only with coalition proof Nash equilibria, which are
obviously invariant under strictly monotone transformations of the players’ payoffs,
we may choose an arbitrary game associated with each profile RV and denote it by
I(G, RY).

Suppose now that G = (X', ..., X" 7) is a given game form. Then each profile
RN € LN corresponds to a game I'(G, RY), and we may consider a certain solution
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or equilibrium for games, for example Coalition Proof Nash Equilibrium, which then
assigns to ['(G, RY) a set of equilibrium strategy choices, and thereby indirectly gives
a set of alternatives to each profile. We shall make this idea of a correspondence
between profiles and alternatives precise:

A social choice correspondence (SCC) is a function H : LN — 24, An SCC is
called a social choice function if H(RY) is a singleton for each profile RY € L¥.

Intuitively, if i is an SCC and RN € LV, then H(R") is the set of alternatives
chosen by the group N according to the rule H.

DEFINITION 3.3 Let G = (X',... X" 7) be a game form. G is Coalition Proof
Nash Consistent (CNC) if for each preference profile, the set of coalition proof Nash
equilibria is nonempty, i.e. CNE(T'(G, RN)) # 0, all RN € LN,

We note that if G is coalition proof Nash consistent, then the correspondence
RN — 7 (CNE(T(G, RY))) is a social choice correspondence. Actually, we can say a
little more:

LEMMA 3.4 Let G = (X',..., 5" ) be a game form which is coalition proof Nash
consistent. Then the social choice correspondence m(CNE(I'(G,+))) is non-imposed
in the sense that for each alternative a € A, there is a profile R € LN such that
T(CNE(I(G, RY))) = {a}.

Proof: Let RN € LV be a profile with ¢ = maxR' for all ¢ € N. Choose a strategy
array 0¥ with 7(o) = a (such a strategy array exists since 7 is onto). Then o
is a CNE of I'(G, RY) since it is even a SNE: There is no coalition S having an
improvement 7° of o because for all i, 7(6") = a is already maximal. Also, if

b€ A\{a}, then b ¢ CNE(I'(G, RY))). O

4 The Representation Problem With Coalition
Proof Nash Equilibria

We now proceed to introduce one of the main concepts of the paper, namely that
of representation. We begin with the concept of an effectivity function:

DEFINITION 4.1 An effectivity function is a map E : P(N) — P?(A) satisfying the
following conditions:
(i)  forall Be P(A), B ¢ E(),
(ii)  for all B € 24, B e E(N
(iit) for all S € P(N), 0
(iv) forall S €2V, A

An effectivity function assigns to each coalition S a family of sets £(.5), with the
interpretation that if B € F/(S), then S may force the outcome of society’s choice to
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be an element of B, or equivalently, S may preclude that society chooses something
from A\B. Thus, the effectivity function may be considered as a description of a
system of rights which are to be valid for the society considered, a constitution in
the sense of Géardenfors [8] (see also Peleg [15]).

A game form gives rise to (at least) two different types of effectivity functions:

DEFINITION 4.2 Let G = (X', ..., X" ) be a game form, S € 2V a coalition, and
B a nonempty subset of the set A of alternatives in G'. We say that S is a-effective
for B if there is a strategy choice 0° = (0');es such that for all strategy choices
oN\S = (0%)ien\ s m(0%, N\ € B, and B-effective for B if for each strategy choice
oM\S there is 0¥ such that m(o%, oN\%) € B.

The a-effectivity function associated with G is the effectivity function ES :
P(N) — P2*(A) given by

E9(S)={B € 2%|S is a-effective for B},

for S € 2N, and ES(0) = 0.

The (-effectivity function associated with G is the effectivity function Eg which
to each coalition S assigns the family of subsets B € 24 such that S is (-effective
for B.

We collect some obvious consequences of these definitions in a lemma:

LEMMA 4.3 The a- and B-effectivity functions of a game form G satisfy:
(1) for all S € 2V, EY(S) C Eg(S),
(2) ES(N) = E(N),
(3) for Be24, S 2N if Be EY(S), then A\ B ¢ Eg(N\S)
(4) If B¢ ES(S), then A\ B € Eg(N \ ).

In general, the inclusion in Lemma 4.3(1) may be proper (see e.g. Peleg [13]).
We shall be particularly interested in the situation where equality obtains, and, as
it is known from previous work on implementation in strong Nash equilibria (see
Moulin and Peleg [12]), such equality does obtain in many interesting situations.
Indeed, one of the main results of the present paper is that the equality of a- and
(-effectivity functions of a game form G obtains when G is CNC.

DEFINITION 4.4 Let E : P(N) — P*(A) be an effectivity function. A repre-
sentation of E (with respect to coalition proof Nash equilibrium) is a game form
G= (X' ...,%"7) such that

(1) B = EF,

(2) G is coalition proof Nash consistent (CNC).



The representation problem for a given effectivity function consists in finding a
representation. In the interpretation, the existence of a representation means that
the system of rights in society described by the effectivity function is consistent
in the sense that there exists a set of rules (formally, a game form) such that the
individuals and groups in society can exercise their rights simultaneously even when
acting strategically within the framework provided by their rules.

As noted in the previous section, a CNC game form gives rise to a social choice
correspondence RY +— 7(CNE(G, RY)), so that a representation of an effectivity
function (with respect to coalition proof Nash equilibrium) induces a particular
social choice correspondence.

DEFINITION 4.5 Let G = (Z,..., X" ) be a game form and let H : LV — 24
be a social choice correspondence. Then G CNE-implements H if for every profile
RN ¢ LN, H(RYN) = n(CNE(I(G, RY))). H is CNE-implementable if there exists a
game form G = (X', ... X" ) which CNE-implements H.

Let (G be CNC. The social choice correspondence RN + 7(CNE(G, RY)) clearly
is CNE-implemented by . In the case where (i is a representation of an effectivity
function £, it might be conjectured that there is some connection between properties
of £ and properties of the SCC which is implemented by , and this is indeed the
case.

Before we proceed, it will be useful to introduce another way of constructing
effectivity functions, namely from social choice correspondences:

DEFINITION 4.6 Let H : LN — 24 be a non-imposed social choice correspondence,
let S € 2N, and let B € 24, We say that S is a-effective for B if there exists an
S-profile R® such that for all (N \ S)-profiles QN\5, H(R®,QN\%) C B and S is
B-effective for B if for every (N \ S)-profile QN\%, there exists an S-profile RS such
that H(RS,QN\%) C B.

The a-effectivity function associated with H is the effectivity function EI .
P(N) — P2*(A) given by

EP(S)y={B € 2*|S is a-effective for B},

for S € 2N and EZ(Q) = 0, and the B-effectivity function associated with H is
the effectivity function Eé{ which to each coalition S assigns the family of subsets
B € 24 such that S is B-effective for B.

REMARK 4.7 It is clear that Lemma 4.3.(1)—(3) hold also for EX, Ef. That also
4.3.(4) holds if H is CNE-implementable will emerge as a consequence of the results
below.

Now we may combine all the previously introduced notions in our first funda-
mental result, which is due to Peleg [14]. A proof of the theorem can be found in
Abdou and Keiding [2] (Theorem 7.2.2, pp. 141 — 143).
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THEOREM 4.8 Let E : P(N) — P?*(A) be an effectivity function, let G = (X, ... X" )
be a representation of E, and let H : L™ — 24 be a social choice correspondence. If

H(RY) C n(CNE(G, RN))

for all RN ¢ LY, then

REMARK 4.9 In Abdou and Keiding [2], an SCC H which satisfies the assump-
tions of the theorem, namely that there is a game form G such that H(RM) C
T(CNE(G, RY)) for all profiles RN € LV is said to be partially CNE-implemented.

However, this is not a standard terminology, cf., e.g., Dasgupta, Hammond, and

Maskin [7].

We conclude this section by noting that as a consequence of Theorem 4.8, an
effectivity function which has a representation (with respect to coalition proof Nash
equilibrium), must have certain properties.

DEFINITION 4.10 Let E : P(N) — P?*(A) be an effectivity function.

(a) E is superadditive if for all B,C € 24, S,T € 2N, B € E(S),C € E(T), if
SNT =0, then BNC € E(SUT),

(b) E is monotonic if for all B,C € 24, S;T € 2V, B € E(S), if B C C and
S CT, then C € E(T).

(¢) E is mazimal if for all B € 24, S € 2V if B ¢ E(S) then A\ B € E(N\S).

The three properties (a)-(c) above are not independent. Indeed, it is rather
easy to show that if £ is maximal and superadditive, then it is monotonic: If B €
E(S),BCC,SCT,and C ¢ E(T), then A\ C € E(N\T) by maximality. Now, S
and N\T are disjoint coalitions, and by superadditivity, BN(A\C) € E(SU(N\T)).
But BN (A\ C) =0, and we have a contradiction.

The following is an immediate consequence of Lemma 4.3 and Theorem 4.8:

THEOREM 4.11 Let E : P(N) — P%*(A) be an effectivity function which has a
representation (with respect to coalition proof Nash equilibrium) G = (X', ... X% 7).
Then E is superadditive, monotonic, and maximal.

Proof: By Theorem 4.8, F = ES = Eg It is easily seen from the definition that
E% is superadditive: Indeed, suppose that S, T € 2V are disjoint coalitions, that S
is a-effective for B and that T' is a-effective for C. Then there is a S-strategy o°
such that for all (N \ S)-profiles 7V\5 we have 7(o, 7V\*) C B. Furthermore, there
is a T-strategy p” such that for all (N \ T')-strategies v™\T| in particular for the
strategy (0%, 7N\MT99)  we have 7(uT,vM\T) C C. Obviously, the coalition S U T is
a-effective for BN C.

To show that F is maximal, we need only combine Lemma 4.3.(4) and Theorem
4.8. Finally, monotonicity follows from maximality and superadditivity. O
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REMARK 4.12 Let G = (¥',...,0" ) be a game form. If G is CNC, then by
Theorem 4.8, EY = Eg If n = 2, then G is CNC iff it is Nash consistent. Hence,
for n = 2, G is CNC iff ES = E§ (see, e.g., Abdou [1] for a characterization in
terms of effectivity functions of two-person game forms which are Nash consistent).

REMARK 4.13 Theorem 4.8 supplies a simple necessary condition for CNE-imple-
mentability: If an SCC is CNE-implementable, then EX = Eé{ is maximal (see Def-
inition 4.10). This condition is easy to check: For example it shows that the Pareto
correspondence is not CNE-implementable. Boylan [6] proves (essentially for a gen-
eralized lobbying model) that on a restricted domain (he assumes continuity and
monotonicity of the utility function of a player in her own transfer), weak (Maskin)
monotonicity is a necessary and sufficient condition for CNE-implementability. As
Maskin monotonicity does not imply the maximality of the a-effectivity function of
a social choice correspondence (see, again, the Pareto correspondence), our results,
for unrestricted (finite) domains, are independent of those of Boylan [6].

As we see, if an effectivity function has a representation, then it must be super-
additive and maximal. The logical next question is: Do such effectivity functions
have further properties?

The answer is no. Given an arbitrary effectivity function £ which is superaddi-
tive and maximal, it is possible to find a game form which is CNC-consistent and
represents F. This result is the subject of our discussion in the following sections.

5 Uniform domination and u-effectiveness

Before we proceed to state and prove a converse of Theorem 4.11, we insert in this
section a short discussion of some solution concepts for games defined in effectivity
function form. These solution concepts may have independent applications; the
reason for our treatment of them is that they are used later in the definition of the
game form which will be used in our solution of the representation problem. For
a more detailed discussion of these concepts, the reader is referred to Abdou and
Keiding [2].

We start with the notion of uniform domination:

DEFINITION 5.1 Let I : P(N) — P2(A) be an effectivity function and RN € LV a
profile. For S € 2V a coalition and B a subset of A we say that the alternative x
is uniformly dominated (shorthand: u-dominated) by B via S at RY if B € E(S),
z ¢ B, and BR°A\B. The alternative z is u-dominated via S at RN if there is
B € 24 such that x is u-dominated by B via S at RN, and x is u-dominated at RV
if there is S € 2V such that x is u-dominated via S at RN,

Thus for an alternative to be u-dominated via S, we demand that there is some
set B of alternatives for which S is effective and which moreover is such that all
players in S agree that everything in B is better than everything not in B.
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EXAMPLE 5.2 Let £ : P({1,2,3,4}) — P*({x,y, z}) be defined by the rule
Be E(S)< |B|+ S| >4

(E is a so-called additive effectivity function, cf. Moulin and Peleg [12]). It is easily
seen that K is superadditive and maximal.
Consider the profile

SISO
2 on @
@8 w|w
R |~

Here, = is u-dominated by {y, z} via {2,4}. The alternative z is dominated (in the
usual sense of this word) by {y} via the coalition {1,2,4}, but this is not a case of
u-domination.

It is clear from the definition that it is rather hard to u-dominate. The following
notion is introduced in order to capture the idea that a coalition might not u-
dominate an alternative but on the other hand might make it look as if it did.

DEFINITION 5.3 Let I : P(N) — P2(A) be an effectivity function and RN € LY a
profile. For S € 2V a coalition and B € 2% a subset of alternatives we say that S is
u-effective for B at RN if there exists an S-profile T such that for each alternative
x € A\B, there is S’ € 2° satisfying the conditions

(a) x is u-dominated via S' at (T, RN\%),

(b) BRY z.

EXAMPLE 5.4 In the profile of Example 5.2, the coalition {1,2,4} is u-effective for
{y}. Indeed, consider the {1,2,4}-profile T{"24}

w8 Q|
2 N |
2w |

As before x is u-dominated in (T1V2% R%) by {y, 2} via {2,4}, and y RZ* 2.
Furthermore, z is u-dominated by {y} via {1,2,4}, and y R"?% 2. We conclude
that {1,2,4} is u-effective for {y}.

In the example, the coalition which was u-effective for the subset {y} was also
effective in the usual sense of the word, that is {y} € E({1,2,4}). This is a general
fact, as shown from the following lemma (for a proof, see Abdou and Keiding [2],

p.148):
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LEMMA 5.5 Let E be a monotonic and superadditive effectivity function, and let
RN € IN. If S € 2V is u-effective for B € 24 at RV, then B € E(S).

Having introduced u-effectiveness, the following concept to be introduced is that
of indirect u-domination:

DEFINITION 5.6 Let E : P(N) — P%*(A) be an effectivity function and R € LY
a profile. An alternative x € A is indirectly u-dominated at RV by the subset B
of A via the coalition S € 2V if S is u-effective for B, x ¢ B, and BR x; x is
indirectly u-dominated at RN if there are B € 24, S € 2V, such that x is indirectly
u-dominated by B via S at RN.

EXAMPLE 5.7 At the profile RV of Example 5.2, the alternative z was dominated
but not u-dominated. However, as we saw in Example 5.4, the coalition {1,2,4}
is u-effective for {y} at R", so that z is indirectly dominated at RY. Clearly, the
alternative x, which is u-dominated at R", is a fortiori indirectly u-dominated at

RN.

The following result linking together the various concepts introduced above will
be used in the next section:

THEOREM 5.8 Let E: P(N) — P*(A) be an effectivity function which is monotonic
and superadditive, and let RN € LY be a profile. If B € 24 is a minimal (for
inclusion) set such that some coalition S is u-cffective for B at RY, then the elements
of B are not indirectly u-dominated at RN .

For a proof, the reader is referred to Abdou and Keiding [2], pp.149 — 150.

EXAMPLE 5.9 In Example 5.7, it was shown that {1,2,4} is u-effective for {y}, so
the alternative y belongs to a minimal (for inclusion) set of alternatives for which
some coalition is u-effective at R{12%4 Therefore, by Theorem 5.8, y is not indi-
rectly dominated at this profile.

To show that there may be alternatives which are not indirectly dominated even
at profiles where each alternative is dominated, consider the effectivity function

E:P({1,2,3,4}) = P*({z,y,2,w}) defined by
ES)={B||B|>1}if|S| >3 orif |[S|=2and 1 € S,

(0 if S =0,
E(S) = {{{x,y,z,w}} otherwise.
Again F is superadditive and maximal. There is a profile B such that each alter-
native is dominated at Y, namely



._.
R
(]
W

I

2 8 n <
8
<

We claim that z is not indirectly u-dominated at R™. Indeed, x cannot be
indirectly u-dominated via a coalition containing individual 1, so it is enough to
show that {2,3,4} is not u-effective for any subset of {y,z,w}. But this follows
from the fact that {2, 3,4} is the only subset of N not containing individual 1 which
is effective for any proper subset of {z,y, 2z, w}, and only w R{*3% z; this means
{2,3,4} could possibly be u-effective for {w} but not for other subsets of {y, z,w},
and since {2,3,4} is not u-effective for {w}, we have shown that {2,3,4} cannot
indirectly dominate x.

Let E : P(N) — P*(A) be a monotonic and superadditive effectivity function.
For later use we define a particular social choice function F' : LV — A as follows: For
any profile RV, there is a set B € 24 such that some coalition S € 27V is u-effective
for B at RV (N is u-effective for A at every profile). Let M(R"™, E) be the set of
alternatives belonging to a subset B of A which is minimal with the property that
there is a coalition S € 2V which is u-effective for B; then M(RY, E) # (). Put

F(RY) = max(R'M(RY, E)),

where for any R € L and B € 24, max(R|B) is the unique alternative * € B with
xRy for all y € B.

The social choice function I will play a crucial role in the next section when
we introduce a particular game form and show that it represents . The choice of
individual 1 as the particular one whose preferences are decisive for the choice of
alternative from the set M(RY, F) is arbitrary, but once the choice is made, it will
matter for the construction of the game form.

6 A representing game form

Throughout this section, £ : P(N) — P*(A) is a given monotonic and superad-
ditive effectivity function. In the following two sections, we show that such an
effectivity function has a representation: We construct a particular game form
G = (¥',...,¥X"% ) and show that (1) F is both the a- and B-effectivity func-
tion of (7, and (2) for any given profile, we can define suitable strategies such that
this strategy array is a coalition proof Nash equilibrium. In the present section we
address problem (1).

In the definition of the game form (, we start with the strategy set 3!, of player
1, which is defined as

S'=Lx®x A,
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where @ is the set of all maps
y" . 2\\{1} 5 zi — zi

taking pairs (.5, B) consisting of a coalition S not containing player 1 and a nonempty
subset B of A to a subset ¢(S, B) of A with ¢(S5, B) C B. Intuitively, the selection
function will be used to pick an alternative which is not uniformly dominated via
S. Thus, a strategy of player 1 consists of a preference relation, a selection function
of the type described above, and an alternative.

For players 1 # 1, we define the strategy set ¥ by

Y=L x®xAxP x(NgxL),

where Ny is the set of nonnegative integers, and where P’ is the set of maps b' :
Ugeamiiat L — P(A x 2V) taking any preference profile Q° for S € 2V, i ¢ 5, to a
family 6(Q°) = (=, S%),ep,» Where B; is a subset of A and for each z € B;, 57 is a
coalition containing i. As it is seen below, b' contain a list of alternatives = which
individual ¢ wants to exempt from u-domination, provided that each individual in
S* has stated the same pair (x, 57).

To define the outcome function 7, we need some notation: For oV = (o!,... o")
a strategy n-tuple in

Yox.ox ¥,
with ot = (QY, ¢t 2t), o = (Q°, ", 2, 0%, (¢, PY)), 1 # 1, define
SloM = {i € N|o' # o' or o' £ o'}
(thus, S[o"] never contains player 1), and let the S[oV]-profile R[c"] be given by
R[o"] = (Qi)ieS[UN]-
Finally, the sets B are determined by
Bi={reA|35" 2V, i 5 : (2,57) € B((Q")jespona)s all h € 57}

if S[oN] # {i} and B* =0 if S[o"] = {i}.
Now there are two cases:

Case 1: S[oN] = 0. We let
r(o™) =2t

i.e. the outcome is the alternative stated by player 1, which by the definition of
S[o™N] is the alternative stated by any player 1.

Case 2: S[o"] # (. Define the set B[o™'] as the set of alternatives = for which
there is no subcoalition S’ of S[o™V] such that = is u-dominated at R[o"] via S’ and

¢ Biforalli€ S, ie.
Blo™] = A\{y € A|35" € 25" B € B(S"): BQYA\B,y € A\B,y € A\Uies B'};

16



(B[o™] is non-empty since it contains the set of alternatives which are not u-
dominated at the profile R[o], and the latter set is non-empty by Theorem 5.8).
Now let the outcome be given by

m(o™) = max(P" ! (S[o], Blo"])),

where i° is the smallest of the integers i € S[c"] such that ¢' > ¢/, all j € S[e"].
Thus, the component #' in the strategy o determines whose preferences (as stated
in the strategy) are to be decisive for the final choice. The role of the sets B' is a
little more obscure; they are there to make it possible to exempt certain alternatives
from domination.

Essentially, the outcome rule is as follows: At first, the set S[o?¥] of players who
disagree with player 1 (as shown by the choice of selection function and alternative)
is determined. If nobody disagrees, the unanimously stated alternative is chosen.
Otherwise, we look at the set of alternatives which are not uniformly dominated in
the disagreeing coalition (when it is taken into consideration that the players may
exempt alternatives from domination by including them in B*). From this set, a
subset is chosen according to the selection function of player 1. Now the final choice
from this subset is made by the member of S[o"] who has stated the largest ¢*, and
according to his linear order P°.

A first result about G gives us that F is indeed the effectivity function associated
with the game form G-

LEMMA 6.1 If E is maximal, then ES = Eg =F.

Proof: We show first that B € F(S) minimal for inclusion implies B € Eg(S)

If 1 ¢ S, choose an S-profile Q° such that BQSA\B. Then for each 7NV with
= (Q, ¢!, x1), the S-strategy o° with

o' = Qe 0.(0,Q)).
where ¢ is an arbitrary selection function with ¢ # !, gives S C S[(US7 TN\S)] and
Bl(0®,7N\9)] C B, so that (0%, 7™\%) € B.

If 1 € S, let ¢ be a selection function such that ¢(5’, B') C B whenever BN B’ #
0; choose Q! such that BQ'A\B, let z € B and define 0° by o' = (Q%, ¢, 2),

O-i = (le 997 l’, ®7 (07 Ql))

for i € S, 4 # 1. For any 7V\9 if B[(0®, 7V\%)] C A\B, then each alternative in
B must be u-dominated at the profile R[(c®, 7V\%)]. By the definition of Q', such
u-domination must be via subcoalitions of N\S. It follows by the proof of Lemma
5.5 that we must have A\B € FE(N\S). However, this contradicts superadditivity
of E since B € E(S). We conclude that B € E§(5).

Conversely, let B € ES(S). If B ¢ FE(S), then by maximality of £, A\B €
E(N\S), and by the first part of the proof, A\B € Eg(N\S) However, from the
definition of £ and Eg we have that B € ES(S) implies A\B ¢ EF(N\S), and
we conclude that B € FE(5). O
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7 Proof of coalition proof Nash consistency

In the present section, we show that the game form defined in section 6 is CNC. We
start by defining suitable strategies and then proceed to check that they indeed are
equilibrium strategies.

Let RN be an arbitrary profile; we let * = F(RY), where F' is the particular
social choice function defined at the end of section 5.

For player 1, the strategy o' is defined as (R', ¢, z); the selection function ¢ € ®
is defined as follows:

Let D' be the set of (5, B) € 2V\1} x 24 such that there is some y € B, y # .,
with = R' y for some 1 € S (some alternative in B is worse than z for some members
of 9). Choose any such y and let ¢(S, B) = {y}.

Let D? be the set of (S, B) with BR®x for which there is a two-element subset
B’ of B such that for some ¢,7 € S,

max(R'|B') # max(R'|B’)

(so that the members of S disagree on the best element of B’); such a subset B’ is
called an admissible pair. An admissible pair {z;, 22} dominates another admissible
pair {wy,w;y} if {wy,wy} RS 2y or {wy,we} R 23 (so a pair is dominated by another
if both alternatives of the first are considered better than one of the alternatives in
the other pair by all members of the coalition under consideration); clearly, if there
are admissible pairs, then there are also undominated admissible pairs. Define the
partial relation > on the undominated admissible pairs by

{wl,wg} > {21722} lf [U)l = 21, W2 RS ZQ],

possibly after a renumbering of {z1, z2} (so that one of the alternatives is the same
in the two sets and the other is dominated via S). Then > is acyclic and therefore
admits minimal elements; Let ¢(S5, B) select an admissible pair which is minimal
for ».

Finally, let D* = (2V\1} 5 24)\ (D' UD?); for (5, B) € D?, there exists a unique
w € B such that BR*w; put »(9, B) = {w}.

This concludes the description of the function ¢, (which of course depends on
the sincere profile RY).

If 1 # 1, then o' = (Q, p, x, by, (0, R')), where ¢ and z were defined above, and
by is the constant function with value §. To define the preference relation @, we use
that according to the definition of € F(RY), there is a pair (B, S) € 24 x 2V with
x € B such that B is minimal for inclusion among sets B belonging to pairs (B, S)
with S u-effective for B at the profile RN. By Definition 5.3, there is an S-profile
T5 = (T%);c5 such that each y ¢ B is u-dominated at (75, RN\%) and B RY y for
some non-empty S’ C S. Now define Q“ as T? if i € S and as R’ otherwise.

This completes the definition of the particular strategy array o. In the re-
maining part of the section, we show that the strategies defined above are indeed
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coalition proof Nash equilibria, and that they result in the outcome prescribed by
the social choice function F'.
We start with the last assertion which is an easy consequence of the definitions:

LEMMA 7.1 7(a™) = a2 = F(RV).

Proof: We have S[o"] = ) so that Case 1 in the definition of 7 applies. a

Now we want to establish that oV is a CNE of the game I'(G, RY). This means
that no coalition can have an ICI against o (cf. Definition 2.6). We start with
coalitions which do not contain the first player:

LEMMA 7.2 Let S € 2V be a coalition with 1 ¢ S. Then S has no internally
consistent improvement of o™V,

Proof: If the coalition S has no improvement of o, we are done. So, let 7° be an
improvement of oV, 7% = (@i7¢i7§;i7[;¢7 (7, ]52)), i € S, with 7(7%,0NVV) = ¢, where
qR°z and g # x. We must show that 7% is not internally consistent.

If S[(7%,6N\¥)] = 0, then ¢ = = by the definition of the outcome function 7, a
contradiction. We consider first the case where S[(7,0V\%)] = S; the general case
is treated afterwards.

Let R[(75, 0™\ = T%, B[(r%,0NV¥)] = B. If (S, B) € D', then ¢ would choose
an alternative y such that @ R' y, contradicting that the outcome is preferred to z
by all members of S. Suppose then that (S, B) € D? in this case p(S5, B) = B’,
where B’ is such that

max(R'|B') = y # » = max(R’|B')

for some 7,7 € S. Suppose w.l.o.g. that ¢ # y. Then ¢ € S can improve upon the
strategy array (7%, 0™\%) simply by changing the last component of the strategy
to some pair (#, ]52), where #* > max{#’|j € S} and maxP? = y. This improvement
by the coalition {7} is internally consistent, so 7° cannot be an ICI.

It remains to consider the case where (S, B) € D?, so that R‘|B’' = R’|B’ for all
i,j € S and B’ C B, meaning that R'|B = I/|B for all 1, j. By the definition of ¢,
we get that m(75,0N\¥) = ¢ satisfies B R® ¢ (that is, ¢ is the worst alternative in
Bforalli € S),and B C C, where C ={w € A|w R® ¢}.

Now z = F(RY) = m(o) is not indirectly u-dominated at R" (Theorem 5.8);
using Definition 5.6 we conclude that S is not u-effective for C' at RY; using Def-
inition 5.3 we get the existence of some alternative y ¢ €' with the property that
for each subcoalition 5" of S, y is not u-dominated at (1'%, RN\ via S/, or C' R% y
does not hold. If ¢ R® y, then y is not u-dominated in (7", R¥\¥), meaning that
y € B C C, a contradiction; therefore, {i € S |y R'q} # 0. Since C' R¥ y holds
for any subcoalition of S\{i € S | y R' q} we get that y is not u-dominated at
(T, RNV9) via any such subcoalition. Thus there is y ¢ C, i.e. with ¢ R’ y for

some 7 € S, and S, C S, S, # 0, such that y R ¢ and y is not u-dominated at
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(T, RN\9) via any subset of S\.S,. We now choose a pair (y, S,) with the above
properties in such a way that 5, is minimal for set inclusion.

Define strategies 1! = (Ql, o 7, b, (, ]52)) for 1 € S, with b* such that
BTN = BT U {(y, 5,))

and b’ agrees with &% on all other profiles, i = max{f'li € S} + 1, and Pi e L some
linear order with maxP*® = y, leaving everything else unchanged. Then in the new
strategy array (v, 75\%, oN\%) we have

B(v%, 75, 0¥V = BU {y}.

By construction, ¢ assigns to the pair (5, B U{y}) either the set {y} (in the case
where z R'y for some 1 € S, so that (S, BU {y}) € D', since in that case y is the
only alternative which is not preferred to & by all individuals in 5), or a subset of
BU{y} containing y (since the preferences R’ for 7 € S agree on B but do not agree
on BU{y}, so that (S, BU{y}) € D?, and all admissible pairs from B U {y} must
contain y). Consequently

a7V M) =y
and % is indeed an improvement for S, of (75, 0™M\%).
If no subcoalition has an ICI of (%, 79\% ¢N\5) then the original improvement

was not an ICI, and we would be through. Suppose therefore that some proper
subcoalition S” of S, has an ICI %" of

(VSy 7 7_S\Sy 7 O'N\S)

with

S SA\S" _S\S, _N\S\ _ S
(N TV eV =20 2 RY .

Then S[(p5", v\ 73\% oN\$)] is a subset of S containing S\ S” and some (pos-
sibly empty) subset 5™ of S”; let
R[(MS//7 Vsy\sll7 7_5’\5y7 O'N\S)] — (TS///7 ,1_‘5«\5//)7
where 75" is some S"-profile.
There are two cases to consider: (a) Suppose that in some of the strategies

pt, for ¢+ € S", the first component has been changed to some QZ +* Q'. Then
R[(MS//,VSy\S//,TS\Sy,UN\S)] £ 1%, and

Bl o5 7 S M) = Bl )
This means that 5" is an improvement of (75,0M\9) as well. Similarly, improve-
ments of (p5", %\ 7\ oM\ are also improvements of (5", 79\ oM\ ete.,
so that if °" is an ICI of (v%, 79\%  oN\¥) then it is also an ICI of (7%, 6¥\%), and

we are (1()11(‘.



In case (b), only the components b and (tAZ,]ADZ) have been changed, so that
S[(p" w3\ 75\ NS = G Let

B = B[(/,LSH, VSy\S//, 75\ UN\S)].

From the minimality property of S, we know that no proper subcoalition 5, of 5, is
such that z R ¢ and not u-dominated at (7%, RN\%) via S\S.. Since the strategy
changes leading to y consisted only of exempting y from domination, we have that
no subcoalition of S, can achieve an alternative z ¢ C. Thus, z € C.

Suppose that y ¢ B. Then, by our definition of b for i € S,, we have that u*"
is an improvement upon (7%, 0™\%) via S”. If u%" is an ICI upon (v, 75\% UN\S)
then it is also an ICI upon (T o™\, Thus, we may assume that {y, Z} C B.

It follows from {y,z} C B that (S, B) Qé D3. We cannot have (S, B) € D,

since in that case (9, B) could not choose z € C. Thus, (S, B) € D%, and ¢
selects an undominated and >-minimal admissible pair {z,w} containing z. Now
2z R® g, and if also w R® ¢, then {z,w} is dominated by {y,q}, a contradiction.
Therefore, ¢ R* w for some i € S, and {q,w} is also an admissible pair. Assume
that {¢,w} is dominated, meaning that there is another admissible pair {w’, w"}
with ¢ R w', w R%w'; we cannot have that » R°w’ since in that case {z,w} would
also be dominated, consequently {z,w'} is admissible; if {z,w'} is dominated, then
so is {z,w}, contradiction, so {z,w'} is undominated; however, {z,w} = {z,w'},
contradicting >-minimality. We conclude that {¢,w} is undominated, and then we
get another contradiction of the »=-minimality of {z,w}. We conclude that (S, B)
cannot be a pair containing z. This concludes the treatment of case (b) which
therefore cannot occur.
5" in the preference component, we
infer from the definition of the improvement v for S, that if 4" is an ICI of
(1%, 75\ oN\9) then it is also an ICI of (7°,0™M\¥) (since the sets S[-], R[-], B[]
5 cannot be ICI, and we are done.

Summing up, we have shown that if S[r%,oV\%)] = & then 77 is not an ICI of
oN. Suppose now that S[(7%,oV\5)] = S is a proper subset of S. Then

Since the improvement p5" differs from 7

will be the same). In any case 7

7T(7' O'N\S)

= (7%, ") = ¢,

S\S UN\S)‘

and the restriction 75 of 75 is an improvement of (O'S,T By the pre-

ceding arguments, we know that there is a subcoalition S of 75 having an ICI of
(77, 7S\8, o™\%). But this means that 7% is not an ICI of oV, O

LEMMA 7.3 Let S € 2V be a coalition with 1 € S. Then S has no internally consis-
tent improvement of o¥

Proof: Suppose that the coalition S with 1 € S has an improvement 7° of o™ with
m(75,0MV) = ¢. From the definition of z and the fact that ¢ R' z, we have that
g does not belong to any minimal set B such that some S is u-effective for B. In
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particular, ¢ does not belong to the set B used in the definition of the preference
component ()¢ of the strategies o', 1 = 1,...,n.

Let 71 = (Ql,cﬁl,i‘l). If ' = ¢ and &' = =z, then S[(7%,oV\%)] C S and
1 ¢ S[(7%,0M\9)], and S[(7, V)] has an improvement of ¢V, By lemma 6.2 this
improvement is not internally consistent, and the same must hold for 7.

Suppose now that @' # o or #' # . Then N\S is contained in S[(75, oV\¥)] =
S. Let (B,S) € 24 x 2V be the pair used in the definition of Q' for 7 # 1. Since
q ¢ B we have that there is §' C S so that ¢ is u-dominated at Q%" and BR%q.
From z € B we infer that S’ NS = 0. But then R[(7°,o™V\¥)] can be written as

(QS/, Qé\sl), and since ¢ is u-dominated at this profile, we have a contradiction. O

The results of lemma 7.1, 7.2, and 7.3 may be summarized as follows:

THEOREM 7.4 Let RN € LN, and let + = F(RY). Then there exist strategies
ol,....0" such that o = (o',...,0") is a CNE in G, and 7(o") = .

Combining Theorem 7.4 and Lemma 6.1, we get the desired converse of Theorem
4.11:

THEOREM 7.5 Let £ : P(N) — P?*(A) be an effectivity function which is mazimal
and superadditive. Then there is a game form G = (X',... X" ) which represents
K, ie.

(i) E is a- and B3-associated with G, E = ES = Eg,

(ii) for each RN € LN, the game (G, RN) has a coalition proof Nash equilibrium.

The result may also be formulated in terms of implementation:

COROLLARY 7.6 Let E : P(N) — P*(A) be an effectivity function which is mazimal
and superadditive. Then there is an SCC H : LN — 24 such that

(i) H is CNE-implementable,

(i1) £ is a- and B-associated with H, E = B = Eé{

8 Concluding comments

In this paper we provide a complete solution to the problem of representation of ef-
fectivity functions in coalition proof equilibria: For each maximal and superadditive
effectivity function £ we can find a coalition proof Nash consistent game form
such that £ = E. Furthermore, (& is tight, that is ES = Eg

This result has two immediate applications. First, if we model rights-systems
by effectivity functions (Géardenfors [8]), then existence of representations is essen-
tial for possible consistent behavior of the members of a society (who obey the
rights-system). If an effectivity function F is the constitution of a society, then
the members of the society can exercise their rights simultaneously only if  has a
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consistent representation (Peleg [15]). Clearly, we treated only one solution, namely,
coalition proof Nash equilibrium.

Second, our result supplies a simple necessary condition for implementability
in coalition proof Nash equilibria (see Remark 4.13). In particular, the Pareto
correspondence is not CNE-implementable in our case of unrestricted finite domains.
Thus, our results are independent of those of Boylan [6] (see, again, Remark 4.13).

Our result is comparable to the main result of Moulin and Peleg [12]. We recall
that Moulin and Peleg [12] prove that an effectivity function is representable in
strong Nash equilibrium if and only if it is stable and maximal (see also Peleg [13],
Theorem 6.4.4). Finally, our work is linked to the works of Gurvich [9] and Abdou
[1] on Nash-consistency of two-person game forms, because a two-person game form
is Nash-consistent if and only if it is CNC (see Remark 4.12).
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