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Abstract

This paper applies revealed preference theory to the nonparametric sta-
tistical analysis of consumer demand. It exploits the idea that price-taking
individual households in the same market face the same relative prices, in
order to smooth across the demands of individuals for each common price
regime. This is shown to provide a stochastic structure within which to ex-
amine the consistency of household level data and revealed preference the-
ory. An application is made to a long time series of repeated cross-sections
from the 1974-1993 UK Family Expenditure Surveys. The consistency of
this data with revealed preference theory is examined. Where rejections
do occur, suitable adjustments to prices for quality or taste changes are
explored. For periods of consistency with revealed preference bounds are
placed on true cost of living indices.
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1. Introduction!

The attraction of revealed preference theory is that it allows an assessment
of the empirical validity of the usual integrability conditions without the need to
impose particular functional forms on preferences. Although introduced by Afriat
(1973) and Diewert (1973) to describe individual demands, it has usually been
applied to aggregate data but this presents a number of problems®. First, on
aggregate data, ‘outward’” movements of the budget line are often large enough,
and relative price changes are typically small enough, that budget lines rarely cross
(see Varian (1982), Bronars (1987) and Russell (1992)). This means that aggregate
data may lack power to reject revealed preference (RP) conditions. Second, if we
do reject RP conditions on aggregate data we have no way of assessing whether this
is due to a failure at the micro level or to the inappropriate aggregation across
households that do satisfy the integrability conditions but who have different
non-homothetic preferences. Finally, it has proven difficult to devise tests of the
significance of rejections in the yes/no context of RP tests. In this paper we
develop and apply techniques which allow us to conduct a nonparametric analysis
of micro data. By combining nonparametric statistical methods with a revealed

preference analysis of micro data we can overcome the problems we have described.

'We are grateful to James Banks, Laura Blow, Alan Duncan, Arthur Lewbel, Ian Preston
and seminar participants in Bonn, Bristol, Chicago, CREST, Copenhagen, Northwestern, Iowa
and the Univeristy of British Columbia for helpful comments. This study is part of the program
of research of the ESRC Centre for the Microeconomic Analysis of Fiscal Policy at IFS. The
financial support of the ESRC and the Canadian SSHRC is gratefully acknowledged. Material
from the FES made available by the ONS through the ESRC Data Archive has been used by
permission of the controller of HMSO. Neither the ONS nor the ESRC Data Archive bear re-
sponsibility for the analysis or the interpretation of the data reported here. The usual disclaimer
applies.

2See Manser and McDonald (1988), and references therein.



We also have a number of other motivations for this study. First, paramet-
ric demand studies on micro data often reject Slutsky symmetry which is one
of the implications of utility maximisation subject to a linear budget constraint.
Amongst the many possible explanations for this rejection are that either we have
the ‘wrong’ functional form or that there exists no well-behaved form of prefer-
ences which can rationalise the data. Nonparametric analysis allows us to check
this. Second, it has proven difficult to test for (global) negative semi-definiteness of
the Slutsky matrix in parametric demand models. Using revealed preference non-
parametric analysis we can simultaneously test for both symmetry and negative
semi-definiteness. Third, if the integrability conditions are not rejected, we often
wish to go on and use demand estimates for policy analysis. Using parametric
analysis there is always some uncertainty as to how much the welfare conclusions
are driven by functional form. If we employ nonparametric techniques then we can
obtain bounds on welfare effects and use these bounds to judge the importance of
the choice of functional form on welfare conclusions. Fourth, the nonparametric
analysis can aid in the development of new and parsimonious parametric demand
systems. Finally, we can extend the nonparametric analysis to investigate revealed
preference for conditional demands.

We begin this paper by deriving a method for choosing a sequence of total
expenditures that maximise the power of the test of the Generalised Axiom of
Revealed Preference (GARP) with respect to a given preference ordering. This is
shown to be implementable on micro data through the nonparametric estimation
of local average demands, or local Engel curves, for each common price regime.
We assume that households in each location and time period face the same rela-

tive prices. Under this assumption, the nonparametric Engel curves correspond to



expansion paths for each price regime. These expansion paths are then shown to
provide an attractive method for testing GARP on micro data. We also consider
the use of conditional demands and separability in tests of GARP when prefer-
ences for a particular good, or group of goods, may be changing over time. For
sequencies of relative prices where GARP is not rejected, the estimated nonpara-
metric expansion paths are also shown to enable the construction of tight bounds
on true cost of living indices and on the welfare effects of non-marginal relative
price changes.

In estimation we address two key issues that arise when placing local average
demands in a structural economic context. The nonparametric Engel curve for
each commodity is specified as a kernel regression of the budget share on log to-
tal expenditure. First, we allow for the endogeneity of log total expenditure in
the nonparametric budget share equations. We do this by completing the model
with a reduced form specification for log total expenditure in terms of disposable
income. The residual from this reduced form regression is added to the nonpara-
metric Engel curve regression to control for the endogeneity of total expenditure.
This augmented regression equation has a partially linear form and can be esti-
mated using the semiparametric estimator suggested by Robinson (1988). Second,
we consider the problem of pooling nonparametric Engel curves across households
of different demographic compsition. We show that the shape invariant model
of Hérdle and Marron (1990) provides a theory consistent generalisation to the
partially linear semiparametric method of pooling nonparametric Engel curves
across household of different composition. A partially linear model for demo-
graphic variation is shown to reduce to Piglog demands under homogeneity and

symimetry.



Using a long time series of repeated cross-sections we use these nonparamet-
ric regression curves, adjusted for endogeneity and demographic composition, to
examine whether revealed preference theory can be rejected for particular types
of individuals or in particular subperiods of the data. From the asymptotic dis-
tribution theory for nonparametric regression we are able to provide a statistical
structure within which to examine the consistency of data with revealed prefer-
ence theory without imposing a global parametric structure to preferences. The
approach we adopt provides an alternative to the Afriat inefficiency measure ex-
plored in Famulari (1995) and Mattei (1994).

There remains the issue of unobserved heterogeneity. Even controlling for de-
mographic composition taking two households that are similar in time, place and
total expenditure we usually find that demand patterns are quite different. This
makes the application of (RP) nonparametric techniques to micro data problem-
atic. Even taking a small number of households in different price regimes usually
leads to a rejection of the nonparametric conditions (see Koo (1963), Mossin
(1972) and Mattei (1994), for example, and the recent paper by Sippel (1997) on
the use of experimental data). We discuss conditions on preferences which are
such that unobserved heterogeneity can be accommodated, and which also mean
that our empirical approach successfully identifies average demand responses. We
also investigate conditions under which average demand responses can usefully
be used for measuring the welfare cost of non-marginal price changes and derive
expressions for the resulting bias.

The layout of the paper is as follows. In Section 2 the method for choosing a
sequence of total expenditures that maximise the power of the test of GARP with

respect to a given preference ordering is developed. A framework for implement-



ing this procedure by using nonparametric Engel curves is provided. This section
also considers the use of conditional demands and develops a method of bounding
true cost of living indices. Two algorithms are presented which give upper and
lower bounds to a level set of utility passing through any point in commodity
space chosen. Section 3 discusses preference heterogeneity and examines the re-
lationship between the nonparametric Engel curves used to test GARP and the
average demands (and average welfare) of a set of heterogeneous households upon
which they are based. In Section 4 we discuss the data and present an empirical
investigation of these ideas using twenty years of the British Family Expenditure
Survey. Tight bounds for the true cost of living over this period are presented and
shown to provide large improvements on classical revealed preference bounds. Im-
portant differences in the change in cost of living across income deciles are found.

Section 5 concludes.

2. Individual Data and Revealed Preference

2.1. Revealed Preference and Observed Demands

Suppose we wished to test experimentally whether a particular agent had
‘rational” and stable preferences. In the context of demand, this means facing
them with a series of prices and total expenditures and testing whether their
demand responses satisfy the Slutsky conditions. Specifically, if we have T' time
periods and given an n-vector of prices p; in each period ¢ we could present the
agent with a series of total expenditures x; and test whether the resulting time
series of n-vector demands q; = q(ps, 1) = q: (z;) satisfy revealed preference

tests. To do this, construct a (7" x T') matrix m in which, for each pairwise



comparison the (t, s) element defines an indicator variable:
m" = 1[pjqi(z;) > piqs(z®)] forallt,s = 1,..,T. (2.1)

which is one when the revealed preference comparison in parentheses is satisfied
(see Varian (1982)) and zero otherwise. We say that q;(x;) is directly revealed
weakly preferred to qs(xs), (qi(z¢) R qs(zs)) if the latter vector of quantities
is affordable at period t prices and total expenditure. If the inequality in (2.1)
is strict then we say that q(x;) is directly revealed strictly prefrerred to qs(xs)
(qi(z) P'qs(s)) since the agent could have obtained the latter more cheaply (at
the prices p;) but chose not to.

Now consider a sub-sequence of periods {s, ¢, u, ...v, w} where the order matters
(so that the sub-sequence {s, t,u,...v, w} differs from {¢, s, u, ...v,w}). We say that
the sub-sequence of total expenditures {zs, z¢, Ty, ..., T } is preference ordered
if {ms, m™" ..m"} = {1,1,...1}. Thus a sub-sequence of total expenditures is
preference ordered if the demand associated with any total outlay is revealed at
least as good as the next one. Given this, we define an indirect revealed preference
relationship: qs(xs) is indirectly revealed weakly preferred to qu(x,,) if there is a
preference ordered sub-sequence starting in s and ending in w; we denote this by
qs(zs) R qu(zy). Given a matrix m of direct comparisons we can construct a
matrix m of indirect comparisons by taking the transitive closure of m; Varian
(1982) shows that this can be achieved inexpensively using Warshall’s algorithm.
Suppose now that we have a preference ordered sub-sequence {xg, ¢, Ty, ... 2y, Ty }
and that we also have that q,(x,,) is directly revealed strictly preferred to qs(xs)
so that:

Puu(Tw) > Pyds(2s) (2.2)
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In this case we say that this sub-sequence fails GARP, the general axiom of
revealed preference. We shall say that the chronological sequence of total outlays
{1, x2,...x7} fails GARP if some sub-sequence fails GARP.

Below, we shall also make use of the Afriat numbers. In terms of the Afriat
inequalities (Varian (1982, p. 949), qs R q. implies that there exist numbers
Us, Uy, Ay > 0 such that

Us S Uw + Awpiu(qs - qw)- (23)

If (2.2) holds then p! (qs — q,) < 0, and since A\, > 0 it must be that Us; < U,

which is a failure of qs; R q,, and consequently a failure of GARP.
2.2. Choosing a Path for Comparison Points

The choice of the sequence of total expenditures x; used in the comparisons
above requires some discussion. There is a well known problem with applying
GARP tests to data in practice to which Varian (1982) refers in his applied work.
This is to do with the fact that, particularly with annual data, income growth
over time can swamp variations in relative prices (which are what we are inter-
ested in). This is because real income growth induces outward movements of the
budget constraint and, combined with typically small period-to-period relative
price movements, this means that budget lines may seldom cross. As a result,
data often lacks power to reject GARP. Indeed, if we choose the x;’s so that bud-
get lines never cross then we can never violate the GARP conditions. Clearly
then, the power of a revealed preference test will depend critically on the choice
of (z1,xs,...27).

One solution is to choose a sequence of constant “real” total expenditures.



Thus given x; and a set of price indices (P (p1), P2(p2), ... Pr(pr)) we could choose
x; = x1P;/P;. Although superficially attractive this begs the question of what
price index to use. More importantly, even if the series of demands generated
in this way did satisfy GARP, we cannot be sure that any other series of total
expenditures starting from x; would also satisfy GARP. Instead of this, we devise
a simple algorithm for determining a sequence of z; points through the data which
maximises the chance of finding a rejection given a particular preference ordering
of the data.

Suppose we have a sequence of demands and consider any preference ordered
sub-sequence {Zs, Ty, Ty, .. Ty, Ty }°. The algorithm for choosing the most powerful
path for this preference ordered sub-sequence is a recursive scheme. Given total
expenditure in the last period in the sub-sequence, x,,, total outlay in the second
to last period v is chosen so that the period w bundle is just affordable at the
period v prices; denote this Z, = p,qu(zw). Thus q,(Z,) is directly revealed
weakly preferred to qu,(z,). Then total outlay in the previous period is chosen
so that q,(%,) is just affordable and so on. Thus the sequential mazimum power
(SMP) path for the preference ordered sub-sequence {zs, z;, Ty, ...Ty, T, } is given
by:

{Zs, Tty Ty - Ty T} = P (T1), Py (Tw) s Pl Qo (T) s Ty } (2.4)

By construction, any SMP path is preference ordered. Figure 2.1 illustrates a three
period, two good example in which the order of the sub-sequence is {q3 R°q, R°q: }.
In figure 2.1 the shaded part of the period 3 budget line gives the q3 demand points

3We are only interested in sequences over the whole data period in which there is some
possibility of rejecting GARP. This implies that there must be at least one preference ordered
sub-sequence.



which result in a rejection of GARP. Intuitively, one can see that this path is going
to maximise the probability of finding some rejection in the sense that ‘pushing
out’ either of the period 2 or 3 budget lines will reduce the length of the rejection
region. If demands are normal then this reduces the chance of observing a demand

in that region.

Figure 2.1: Testing GARP, a three period, two good example

good 0

q3

q1

qZ
X1 X3 X2
good 1

To formalise our notion of power we need some more definitions. The first
concern demands. Let ¢!(z) be the ith element of the demand vector in period ¢.
Demands are said to be normal if x > x' implies that ¢!(z) > ¢(z') for all (,t).
This is a natural assumption to make for the wide commodity aggregates we shall
be working with. In the data analysis below we show that the 22 commodities we
deal with are all normal goods. We shall also need: demands are continuous if

qi(x) is a continuous function for all (i,t).
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The second definition is required to state our formal result. A cycle of a sub-
sequence of indices is defined to be another sub-sequence of the same length that
starts at any point in the original sub-sequence and maintains the ordering of
indices; for example {u, ...v,w, s, t} is a cycle of the sub-sequence {s,¢,u,...v,w}
(and vice versa). Similarly we say that {z,, ...x,, Ty, Ts, :} is a cycle of {z, z;, x4

yeerTopy Tap }-

Proposition 1. Suppose that the budget sequence (Z1, &g, .....27) has a preference
ordered sub-sequence that rejects GARP. If demands are normal then the SMP

path for any utility non-decreasing cycle of that sub-sequence also rejects GARP.

Proof. Without loss of generality we take the length of the GARP rejecting
preference ordered sub-sequence to be 3; let it be, say, {&s, &, 2, }. That is:

(]-) -%s - plsqs(-%s) Z p;qt(-%t) and

(2) 2t = pia(%t) > PyQu(?u) and

(3) Zu = PouQu(®u) > PLAs(s)-
We consider the SMP path for one cycle of this ordered sub-sequence and show
that it too rejects GARP; the proof for any other cycle follows similar lines.
Consider the cycle (2, Ty, Zs). The corresponding SMP path (%, Z,, Z5) has:

(4) -’%u - p;QS(L%s) - p;QUEju) and

(5) ¢ = Piqu(Tu) = P;a:(T¢).
By construction this is a preference ordered sub-sequence (q,(%,)R’qs(Zs) and
q: (%) R°q. (%)) so that this sub-sequence rejects GARP if q4(zs) P°qq(7;); that
is, if:

(6)pLas(s) > Plae(Ty).
From normality, (3) and (4) we have:

PLau(Zy) > PLau(Tu) = Tu > Ty = ¢.(24) > ¢.(Z,) for all 4
Combining this with (2) and (5) we have:

p;:CIt(it) > P;:Qu(iu) > P;:Clu(ju) = p;CIt(jt) = Ty > T4
From this and (1) we have:

Pyas(Zs) > pPiai(2e) > pla(Z:)
which is condition (6); hence GARP is rejected for this sub-sequence. B

Thus if we test for GARP along a given SMP path starting from a given
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total expenditure and we do not reject, then we can be confident that we would
not reject for any other path which starts from the same total expenditure and
maintains the utility non-decreasing ordering implied by the SMP path. There is
no need for the chosen ordering of the SMP path to be chronological.

In the statement of this proposition the normality assumption is necessary in
the sense that without it we can construct counter-examples. In the data analysis

below we show that the 22 commodities we deal with are all normal goods.

2.3. Nonparametric Expansion Paths

So far we have been assuming that we can take a single agent and present
them with any path of total expenditures. In practice, of course, we cannot
do this in anything but an experimental setting. Instead we have to use non-
experimentally generated data on prices and quantities from a number of hetero-
geneous households observed only once.

To achieve the SMP path described in Proposition 1, we need to be able to
move individuals along their expansion paths. To see this consider Figure 2.2
which adds expansion paths to Figure 2.1. Suppose we start at budget line z; for
prices p; and demands are given by qi(z;). To follow the SMP path we need to
choose a budget line under prices p» so that q; can just be bought, this budget level
at prices py is labelled Zy. Then the chosen qu(75) is such that qa(Z2) R® q;(%1).
If the observed budget was x5 this is an example in which the budget line has

moved out, reducing the chance of finding a rejection.

The sequential maximum power path can be constructed by moving along the

g2 expansion path F(qs| x, ps) in Figure 2.2. If we now choose =3 so that g2 can
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Figure 2.2: Testing GARP, a three period, two good example with expansion
paths

good 0

E(0s|x,p3)

E(gzlx,p2)

X2
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just be bought at p3 then we maximise the region of rejection of qs with respect
to qq, denoted by the thick part of the budget line defined by p5qs. At any point
in this region q;(72) P° q3(23) and GARP is rejected. Again this can only be
achieved by moving along the qs expansion path to the point q; on budget line
73.* Movements along the expansion path are equivalent to movements along the
Engel curve. So that if Engel curves are known then so are the expansion paths.
To estimate the Engel curves we turn to nonparametric regression methods.

It is assumed that in period ¢, prices denoted p{ for each good j = 1,...,n
are common to all individuals. For our purposes, it will be useful to think of ¢ as
time but it may alternatively reflect region or some other separation within which
the same market price is set. Typically the number of different price regimes
t = 1,...T, will be small. Commodity demands and total expenditure, on the
other hand, are indexed by both an individual index ¢ and ¢, the dimension of ¢
will be (very) large.

The advantage of micro demand data is that we can estimate Engel curves
nonparametrically for each common price regime. At any point in time and at
any location all individuals face the same relative prices and are characterised by
differences in endowment or total budget x;. For each individual ¢ and good j
there is an expenditure p/¢’* in period ¢. In the next sub-section we discuss allow-
ing for heterogeneity in preferences; for now we simply define the nonparametric

Engel curve for price regime p; as the mean expenditure conditional on total

“Note that the possibility of rejection is only maximised between adjacent points in the
sequence, i.e. between the demands under price regimes 1 and 2, 2 and 3 etc. In this case the
rejection we find is between q; and q3. To maximise the possibility of finding this rejection
we could choose the SMP comparison such that Z3 is selected such that qs(Z3) R® q,(21), i.e.
choose the price/ preference ordering sequence 1, 3, 2.
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outlay x i.e.
E(plql|x) = pigl(z). (2.5)

The price p{ is a constant in each period t so that, in any price regime p;, the
conditional mean of each demand given total outlay x defines a set of cross-section
demands:

E(¢l|z) = gl (x) for j =1,.....n. (2.6)
The power of the nonparametric analysis comes from knowledge of the regression
line gf (x) and its precision local to specific points of the z distribution.

From extensive earlier work on the Engel curve relationship in British house-
hold level data (see Banks, Blundell and Lewbel (1997)), we know that budget
shares that are linear in log total expenditure provide a good baseline specifi-
cation. For this reason we estimate the Engel curves using the nonparametric
regression of budget shares on log total outlay.” Defining budget shares as

w =222 for j=1,...,n,and t =1, ..., T, (2.7)
x

the nonparametric regression estimates the conditional expectation
E(w]|z) =mi(nz) for j=1,...,n, and t =1,....., T (2.8)

In what follows we will refer to m? (Inz) as the local average demand for good j

in period t indexed by =x.
2.4. Pointwise Inference for Pairwise Comparisons

At each stage in the above discussion we are comparing weighted sums of

kernel regressions. The pairwise comparison in (2.2) can be written

Banks, Blundell and Lewbel (1997) find the density of Inz to be well approximated by a
normal density in their Engel curve study of the same UK Family Expenditure Data source.
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n

> plgl(@) > plgl(xs) for s #t. (2.9)
j=1 j=1
Noting that adding-up implies

Zp{gi(azt) =z, for all ¢

j=1

condition (2.9) conveniently reduces to the comparison

n—1
Iy
Y " alygl(ws) < @ — b, (2.10)
=1
where o, = pl — %pﬁ and &;, = % are known constant weights in each price

regime.

Since the nonparametric Engel curve has a pointwise asymptotic standard
error we can evaluate the distribution of each ¢/ (x;) at a finite set of points z;.
For example, in what follows we consider certain quantile points on the SMP path.

Pointwise standard errors for kernel regression are given in Hérdle (1990).°

6Briefly, for bandwidth choice h and sample size N the variance can be well approximated
at point z for large samples by

var(gd (x)) = % (2.11)

where cg is a known constant and fp(z) is an (estimate) of the density of x

with weights from the kernel function

wi(2) = Kn(x — 23)/ fa(2).
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To evaluate (2.10) we need to find the distribution of the weighted sum of
correlated kernel regression estimates. However, since the g7 kernel estimates are
to be evaluated at the same point x using the same kernel smoother and the same
bandwidth, the constants associated with the kernel function and the density f,(z)
itself will be common to all variance and covariance terms. Pointwise standard
errors and confidence bands for expression (2.10) are therefore tractable and are

used extensively in the empirical application below.
2.5. Quality Change, Conditional Demands, Separability and GARP

It is common in empirical demand analysis to work with conditional demands
(see for example Browning and Meghir (1991)). This is particularly convenient
where some good, or group of goods, is considered to be rationed or subject to
some unmeasured change in quality, preference or habit formation, and is also
not separable from the group of goods under study. For example, demands for
tobacco consumption are very likely to be subject to changes in preference and
quality following government health announcements over the period of study. It
is unlikely that the level and participation of tobacco consumption is therefore
fully rationalisable by a set of stable preferences over this period. However, it
is also likely that preferences over certain other goods of interest, such as beer,
wine, spirits and entertainment are directly affected by tobacco consumption; that
is, they do not form a subgroup which is separable from tobacco. Consequently,
demands conditional on the level of tobacco consumption may be rationalised
even though for the set of goods with tobacco included this would not be the
case. Similarly, the set of goods excluding tobacco would also not be rationalised

in the case where they were not separable from tobacco consumption.
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If there is an argument that preferences for tobacco may have changed over the
period, then there is good reason to expect that a dataset which includes tobacco
will fail a test of GARP. If this is so, then it means that separability is formally,
as well as intuitively, rejected and we cannot simply omit tobacco from the set of
goods considered.”

Consider instead the case of n + 1 goods in which the ‘conditioning’ good ¢°
is subject to some ration or quality change and preferences over the remaining
‘goods of interest’ ¢, ..., ¢" are thought to behave according to rational consumer
theory®. Note that if preferences over the goods of interest are assumed not to
be separable from the conditioning good, and we do not observe the latter, then
we can rationalise any set of prices and quantities for the goods of interest (see
Varian (1986)). Thus a ‘missing’ good makes it impossible to test for GARP.

The simple choice model is as follows

max U (q;)

"To see why this is so consider a dataset which is partitioned into two sub-sets of goods and
prices, ((pk7 qk),(po,qo)). Preferences over q° are weakly separable from q® if there exists a
sub-utility function w (-) and a super-utility function v (qk, w) which is strictly increasing in w

such that
u(q”.q°) =v (q",w(q?))

The criterion for separability is set out by Varian (1983). This is that if the data were
generated by such a utility function, then the data ((p’" , po), (q’“ ,qo)) and the data (qo,po)
must satisfy GARP. This is necessary. For sufficiency the data (po,qo) and (p’“7 1/ qk,w)
must satisfy GARP for some choice of (w, u) which satisfy Afriat inequalities. In other words,
the whole dataset has to pass GARP, the arguments of the sub-utility function have to pass
GARP, and the whole dataset with the separable components replaced by their group ‘price’
(1/p where p is the marginal utility of income at p”q®) and their group ‘quantity’ (w) must
pass GARP.

8This idea of introducing a conditioning good is similar to the ideas proposed by Prais and
Houthakker (1955) and Fisher and Shell (1971) and generalised by Muellbauer (1975). They

introduce a time-varying quality parameter directly into the utility function.
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st. mqp <z t=0,..,T

where 7, = p; - p, is the price which can be decomposed into the observed com-
ponent p; and an adjustment factor g, (in the Prais Houthakker model is is a
quality deflator). We assume that only one good (good 0) is subject to perference
variation. Hence 7% = p¥ for k # 0, V ¢, and p§ = 7} (normalising 49 to 1), with
pd zwg depending on whether the marginal utility of the good is is increasing or

decreasing over time. If the marginal utility is increasing then p) > 70 as p < 1.

The first order condition is that

U’ (ar) = A (pe - ) =0

where \; > 0 if the constraint binds. Substituting into the usual concavity condi-

tions we have the Afriat inequality:

Us < Up+ A (Pe - 1) (a5 — ar) (2.12)
or more specifically (denoting q; = (q},...,q") and 7, = (7},..., 7))
Us < U+ M7} (Qs — qt) ift=0
Us < U+ M7 (qs — aq) + A (2 — ¢) otherwise.

We observe the correct prices for all the other goods (k # 0), V ¢ (since there
is assumed to be no quality or perference variation). However, we do not observe
the price for the Oth good (7)), except in the Oth period.

The restrictions imposed by GARP in this case can be shown using a variant

of Theorem 7 in Varian (1983) to imply a set of concavity conditions for the
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maximisation of some continuous, concave, monotonic and non-satiated utility

function defined over q = (¢!, ..., ¢")’ conditional on ¢°.

Proposition 2. The data (qY,¢3,...q%, a1, qz, -.Ap, p3, 3, ...0%, P1, P2, ---P1) can

be rationalised iff there exist numbers Us, Uy, \s > 0 and p, such that

Ut S Us + )\sp/s(qt - qs) + )‘sp(s):us(qg - qg) (213)

Proof.

The proof is identical to that of Theorem 7 in Varian (1982).

|

Since the preference change (or quality change) model can be rewritten as a
stable preference model with virtual prices the usual GARP restrictions apply to
the data with the actual price of the replaced by the adjusted price (7). Thus
allowing for a conditioning good is as though we can choose a price for this good
that is different from the observed market price. If we can find p,’s for each period
that equal unity then we can rationalise the data on all n+1 goods. But if GARP
is rejected for the full set of goods, the addition of the extra free variables p, may
make it possible to rationalise the conditional demands for the goods of interest.
Formally, p,p? is the virtual price for the conditioning good in period s. If agents
like the conditioning good less over time then we would expect to find that p, > p,
for t > s; that is, it is as though the virtual price of the conditioning good is rising

over time. Adding more conditioning goods further relaxes the restrictions GARP

places on the observed data.
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In general, for some rejection such as p,q; > p;qs and p.qs > p.q; the
minimum price adjustment to the price of the 0th good necessary such that p,qs =

p.q: is to set

K
0 __ Zk:1 pf (qgC - Qf)

S )
If (g9 — ¢/) < 0, then this is a lower bound on p (denoted by p?); i.e., we need

(2.14)

to set p? > ES so that piqs < plq;. Any p? < ES will violate GARP. Reversing

these inequalities this is an upper bound on p? (denoted by p°)*

Proposition 3. If (¢! —¢2) > 0 and S, ¥ (¢F — ¢*) > 0 then set pl = 7.
Any p? > 7Y will violate GARP.

Proof.

(1) Denote P, = (7%, pt, ..., pX)
(2) P, is such that p,qs = P,q: = =5

(3) Suppose p_ > P, where p_= (Qg,pi, ...,pf) :
(4) Then from (2) and (3) plas > P,as = p'ar = dqs P q, but the SMP
path induces that q; R°q, which is a violation of GARP. H

Now suppose that there are two rejections: p;qr > p;qs = q, P’ q, and
P49 > P4 = qr P’ q, while the SMP path induces that q; R q,, q, R’q,
and q; R q,. We need to find a single p° such that p;q,. = p;qs and p;q,. = p;qt
(which is the minimum adjustment necessary). If (¢¥ — ¢°) > 0 and (¢? — ¢°) > 0
then we have two lower bounds of which the highest, max(]_ags, Egt), encompasses
the other and is the overall lower limit. Similarly if we have two upper limits then
min(pY,, p%) encompasses the other. But, if (¢° — ¢°%) > 0 and (¢? — ¢°) < 0, say,

then the first equation gives a lower limit for p! > ]_92, and the second gives an

9Note that Ziil Pk (qé — q,{?) and (q? — qg) may have different signs. In this case the mini-
mum necessary adjustment will give a negative price. If this is an upper limit then no positive
price for this good can be found which can rationalise GARP.
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upper limit of p? < p°. If 7° > ES then no value for p? in the interval will cause
a violation of GARP. If 7} < p° then there exists no value for p which does not

violate GARP1Y.

2.6. Welfare bounds and expansion paths

Afriat (1977) described the way in which revealed preference information can
be used to improve the classical bounds of the welfare effects of a price change.
The idea is that the axioms of revealed preference can be used to glean addi-
tional information on the curvature of indifference surfaces in commodity space
and that this can be used to improve classical two sided bounds on the welfare
effects of price changes. This technique is used in Varian (1982) and Manser and
McDonald (1988). However, this sort of improvement to the welfare bounds from
revealed preference is only possible when budget surfaces cross. And this may, for
the reasons discussed above, be a rare occurrence, particularly with aggregate or
average demand data; indeed in Varian’s (1982) applied work on GARP bounds
on cost-of-living indices, improvements were only possible to the classical bounds
for two years out of thirty two studied. In practise this has limited the usefulness
of GARP bounds.

Knowledge of expansion paths can improve these bounds. Movements along
expansion paths allow the maximum information on the curvature of the indiffer-
ence curve through a given point to be utilised. The following algorithms provide
upper and lower bounds on an indifference curve through a given point in com-

modity space:

0 Under some circumstances a single adjustment designed to address one particular rejection
may cause rejections elsewhere. Analogously it can also fix rejections elsewhere. There is, as far
as we know, no easy way to tell which will happen in advance.
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RP (qp) Bound Algorithm

Output is the set RP of boundary points of which qq is a member and which
has 7'+ 1 elements where piq; < piq; V qi;,q; € RP and either q; R° qq or
q; R qp for all q; € RP.

)
) Set R = {q; = (min {z|pja: = piqu }) quw € W, t € 7}
) Set E ={q; € R: p,q;, > p.q, for q; € R}
) Set W =R/E

) If E =@ set RP =W and stop. Otherwise go to (2).

RW (qo) Bound Algorithm

Output is the set RW of boundary points of which qg is a member and which
has T'+ 1 elements where pjq; < piq; V qi,q; € RW and either qy R q; or
qo R q; for all q; € RW.

)
) Set R ={q; = (max{z |p,apy = p)a:}) Qv € B, t € 7}
) Set B = {qi € R:pjq; > pjq; for q; € R}
) Set B=R/E

) If E = & set RW = B and stop. Otherwise go to (2).

Proposition 4. If the data local to the reference bundle qo reject GARP, then

the algorithm for the boundary to the set RP (qp) will not converge.

Proof.

Without any loss in generality take the simplest case. In which there are two
periods. Denote the reference period bundle as qg, the other as q;.

1) By Step (1) W =qp,t={0,1}, E = @.

2) By Step (2) set 1 such that piqi (z1) = pido. Set R = {qo, a1 (z1)}

3) Suppose that these data reject GARP. Since by construction q; R°qq this
means that qoP%q;.

4) By Step (3) E = {qo} since qyP°q; through violation of GARP and by

Step (4) W ={a1}.
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5) Since F # &, return to Step (2) and set x{, such that pjqo (z)) = ppa:. Set

R={qo(g),q1 (1)}

6) Now by construction qq (z}) R°q; but since quPqo () then (2) implies
that q; (z1) P’qq (z,) which is a violation of GARP.

8) Hence by Step (3) E = {qi (1)} through violation of GARP, and by Step

(4) W ={qo (x5)}-
9) Since E # @. Return to Step (2). etc. W
Proposition 5. If the data local to the reference bundle qo reject GARP, then

the algorithm for the boundary to the set RW (qo) will not converge.

Proof.
The proof is analogous with that for Proposition 4. B

What this means is that these algorithms provide a test of GARP in the
region around the reference bundle'!. Indeed at each step bundles are found
such that pjq; = p;qo. Using the argument for the SMP path described above,
this maximises the possibility of finding the rejection pyqo > pga:, although the
‘sequence’ here is a set of pairwise comparisons either directly or transitively to
do. Propositions 3. and 4 tell us that if the algorithms fail to converge then there
are no coherent indifference curves to bound in that region of the data because
the data reject GARP.

Note that one of the benefits of this techniques over the classic bounds revealed
by actual data in which any budget constraint can only appear once, is that each
price regime can be used twice; once to bound the indifference curve from above,

and once to bound it from below.

1 The reason that the argument is restricted to commodity space local to the reference bundle
is that expansion paths may cross and un-cross as they move through higher levels of total
expenditure. Thus GARP may be rejected for, say high income households, but pass for low
income households. The convergence of the algorithms requires that GARP is not violated in
the region around the reference bundle.
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A simple two dimensional illustration of the algorithms to compute the im-
proved bounds is shown in figure 2.3. In this example budgets are set such that
pia: () = plao, Pya2 () = phqo, and hence q; and gy are directly preferred to
qo and are added to W in the first iteration. The point q3 would also be identified
in the first iteration since p5qs = p5qo but p5as > psq; and p4qs > psqs imply
q3 P qp so qz must be above the indifference curve and so can be improved. In
the next iteration we compute points revealed preferred to each of the (now three)

members of W = {qo,q; (2}),q2 (z5)}. The points revealed preferred to qo will

just be {qo, q1 (), a2 («}) ,q3} again.

Figure 2.3: Improving the bounds by means of expansion paths

good 1

E(culx.p2) RP(@)

upper E(g2/x,p2)
E(aslx,p3)

lower [—_

RW(qo)

good 0

There will be another four points (one on each expansion path including

E (qo|z, po) which is not shown) which are revealed preferred to each of the other
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members of W (q; (2}),q2 (2})). These are placed in R, replacing the previ-
ous set and any strictly preferred bundles are removed to E. This leaves the
qs (z%) bundle at an expenditure level (z4) such that p5qs (%) = p4qq (25). Now
qs (75) R° qs (7)) and qo (2) R° qp give qz (75) R qo and the algorithm ends
with the upper bound illustrated as the next iteration will find no improvements,
R will be identical to W and E will be an empty set. The budget lines using each

price vector as the final total expenditure levels are denoted {z}, z}, z5}.12

3. Preference Heterogeneity

We turn now to the relationship between the (nonparametric) Engel curves
above and the average demands for a set of heterogeneous agents. There are
two alternative ways of interpreting the impact of heterogeneity on the average
demands estimated from Kernel Engel curve regression. We could assume indi-
vidual demands are rational and then ask for conditions on preferences and/or
heterogeneity that imply rationality for average demands. This is the approach
of McElroy (1987), Brown and Walker (1991) and Lewbel (1996). Alternatively,
we could make no rationality assumptions on individual demands and simply ask
what conditions enable average demands to satisfy rationality properties. This is
the approach of Hildenbrand (1994) and Grandmont (1992).

Suppose for each good j we write average budget shares as

E{w;|lnz,p} = f; (Inz, p) (3.1)

then, if we let € represent the vector of unobserved heterogeneity terms, a nec-

12Note that the data illustrated give a good deal of information about the curvature of the
region of indifference and the bounds in the welfare effects are tightened as a result since we can
now discard the Paasche upper bound for the new price vector given by the dashed line.
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essary condition for the average budget shares recovered by the nonparametric

analysis discussed above to be equal to average budget shares is that:

w; = fj(Inz,p) +¢; (Inz,p)’e (3.2)

where F (e|lnx,p) = 0. Given this combination of functional form restric-
tions and distributional assumptions, our nonparametric analysis recovers gj () =
fi (Inz, p'). Notice this allows for quite different tastes across agents. In partic-
ular, the first-order price and income responses for agents can vary in any way.
Thus a good may be a luxury for one person and a neccessity for another.

This aggregation structure is very different to those used in Gorman (1954) and
Muellbauer (1976). In particular, we are not aggregating across different incomes.
Additionally, we are not assuming that individual demands are integrable; that is,
for given € we can have that the Slutsky conditions may fail for w; (Inz, p,€). In
this respect, our structure is closer to that of Hildenbrand (1994) and Grandmont
(1992). However, their analysis shows conditions for average demands to satisfy
the Weak Axiom of Revealed Preference (WARP, see Varian (1982)) but GARP
requires more. In particular, GARP implies the Slutsky symmetry conditions.
In the heterogeneity structure given in (3.2) above we do not impose that indi-
vidual demands satisfy the Slutsky conditions. If, however, we wish to impose
integrability at the individual level then there are restrictions on the ¢, (z, p) and
the distribution of the heterogeneity terms (see McElroy (1987) and Brown and
Walker (1989)). If all preference parameters are to be heterogeneous then prefer-
ences are restricted to what is essentially the class of Piglog demands (see Lewbel
(1996), for example).

The function f; (Inz, p) gives mean responses to changes in prices conditional
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on a given level of total expenditure. Thus we can use this function for positive
analysis, for example to recover the revenue implications from a change in taxes.
Additionally, the utility function that is associated with an integrable set of de-
mands f; (Inx, p) is a prime candidate for use in equilibrium models that assume
a representative agent. In our analysis below we apply the GARP tests to the
mean function f; (Inx, p). The reason that we are interested in testing for GARP
using these mean responses is that without such a rationality condition holding,
it is difficult to see how we would ever conduct coherent welfare analysis of price
changes. The heterogeneity conditions for using the mean function for welfare
analysis are, however, stronger than the conditions given in (3.2) which suffice for
positive analysis.

To understand the biases that derive from using f; (Inx, p) to conduct welfare
analysis consider second order approximation of the log cost function'® for a non-
marginal price change Alnp;.

A In & 1 3wj 3wj
ity

Alnp; v

np, 8lnmwj> Alnp;. (3.3)

Using (3.2) this becomes

Alne _“’j*%[( o, o, fj>+( o0; , 99, )e<fj+¢;e>]mnpj.

Alnpj_ Olnp; OJlnz Olnp; Olnz
(3.4)
Therefore the mean welfare measure has the form
Alne 1/ 8f; of; 1 9¢/
E =w;+- J I f ) Alnp;+=—20Q.0.Alnp,. (3.
lAlnpj|x’p] u)J—i_2 (8lnpj+alnxf]) npj+281nx ¢;Alp;. (3.5)

13See Banks, Blundell and Lewbel (1996), for example.
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where E{ee'|z, p} = Q..

The first two terms on the right hand side of this expression can be computed
using the mean function f; (.) so that our mean function gives mean welfare effects
if the final bias term is zero. This will be the case if, for example, the heterogeneity
term ¢(Inz, p) is independent of total expenditure so that all households have the
same marginal income effects. Note, however, that this condition is sufficient and
not necessary; weaker assumptions suffice to make the bias term zero or small.

To illustrate, suppose that each household’s preferences are Piglog. This covers
the class of Almost Ideal (see Deaton and Muellbauer (1980)) and Translog (see
Jorgenson, Lau and Stoker (1982) demand systems. The budget share for good j

can be expressed as
w; = a; +T;(p) + B; (Inz —a'Inp —T'(p)'Inp)for j =1,..,n (3.6)

where o and (3; are preference parameters I'(p) is a nonstochastic matrix of
functions of prices (of which I';(p) is the j'th row) and o = (o, ...a,,)". Allowing
a; and ; to have additive random components v; and 7, respectively results in

a share model where the residual term is given by:

u; = v — ;v Inp +1; (lna: —(a+v)Inp-T(p)'In p) (3.7)

If we assume E(v|Ilnz,Inp) =0, E(n|lnz,Inp) = 0 and E(vn|lnz,Inp) = 0 we
have the heterogeneity structure given in (3.2). However, notice also that if the
heterogeneity is restricted to the v terms then there are no Inx terms in the
heterogeneity expression (3.7) and the bias term disappears.

An alternative structure is suggested in Heckman (1974) and Brown and

Matzkin (1995). In both of these papers the heterogeneity is introduced so that
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it enters in to the first order conditions in a convenient way. Specifically, these
authors allow for multiplicative and additive heterogeneity terms, respectively, on

the marginal utility of each good'*. For example, Brown and Matzkin have:

v(q,e) =¥(q) +de

where ¥(.) is the common utility function. This effectively makes the price het-

erogeneous since we have:

Ap; =vj(q,€) = V;(q) + ¢

If heterogeneity of this form is introduced in to the simple Al model above it
will be seen that the resulting error term does not fall in the structure given in
(3.2). Thus we could not estimate consistently the average of budget shares using
nonparametric techniques. Brown and Matzkin suggest an alternative strategy.
In general the error term in (3.2) will represent measurement and optimisation
error as well as preference heterogeneity so it would seem natural to work with
local average demands. Averaging locally to each x eliminates unobserved hetero-
geneity, measurement error and (zero mean) optimisation errors in demands but

preserves any nonlinearities in the Engel curve relationship for each price regime.
4. An Empirical Investigation on Repeated Cross-Sections

4.1. Data

We use repeated cross-sections of household-level data from the British Fam-

ily Expenditure Survey (1974 to 1993). The FES is a random sample of around

4Heckman (1974) actually adds a heterogeneity term to the marginal rate of substitution but
this can be modelled as given in the text.
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7,000 households per year from which a sub-sample of all the two-adult house-
holds with a car was drawn!®. The first and last percentiles of the within-year
total expenditure distribution in this sub-sample was then trimmed out. This
leaves 58,947 households (between 2,640 and 3,242 in each year). Expenditures
on non-durable goods by these households were aggregated into 22 commodity
groups and chained Laspeyres price indices for these groups were calculated from
the sub-indices of the UK Retail Price Index giving 20 annual price points for
each group of goods.

The commodity groups are non-durable expenditures grouped into: beer, wine,
spirits, tobacco, meat, dairy, vegetables, bread, other foods, food consumed out-
side the home, electricity, gas, adult clothing, children’s clothing and footwear,
household services, personal goods and services, leisure goods, entertainment,
leisure services, fares, motoring and petrol. More precise definitions and descrip-

tive statistics are provided Tables A.1 and A.2 in the Data Appendix.
4.2. Semiparametric Estimation and Observed Heterogeneity

A popular approach to semiparametric estimation is to use the following
partially linear budget share regression (we drop the j subscripts denoting goods
for convenience)

w=g(nz)+2z'v+e (4.1)

in which z'+ represents a linear index in terms of a finite vector of observable

exogenous regressors z and unknown parameter vector . Here we may assume

E(g|lz,Inz) = 0 and Var(e|z,Inz) = 0*( z,Inz). Following Robinson (1988), a

15This was in order to allow us to include motoring and particularly petrol as commodity
groups.
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simple transformation of the model can be used to give an estimator for «y. Taking

expectations of (4.1) conditional on Inx, and subtracting from (4.1) yields
w— E(w|lnz) = (z — E(z|Inz))~y +e. (4.2)

Replacing F(w|Ilnx) and E(z|lnz) by their nonparametric estimators, denoted
my’(Inx) and mj (In z) respectively, the ordinary least squares estimator for = is
\/n consistent and asymptotically normal.

The estimator for g(Inx) is then simply
gn(lnz) =my(lnz) — mj(Inx)'5. (4.3)

Since 4 converges at y/n the asymptotic distribution results for g,(Inz) remain
unaffected by estimation of « and follows from the distribution of m}’(Inz) —
m; (Inz)'.

Although the partially linear model in (4.1) looks attractive, in this setting it
turns out that imposing the integrability conditions requires that g (.) be linear.
To see this consider the Slutsky symmetry condition in budget share form:

Olnp; "0lnxz Olnp; ‘Olnz

(4.4)

Now suppose that budget shares have a form that is additive in functions of Inz

and demogrphics, just as in (4.1):
w; (Inp,Inz,z) = h' (Inp,z) + ¢ (Inp,Inz) (4.5)

We then have the following proposition'®.

16Tn what follows let gi , for example, denote the vector of partial derivatives og g (.) with
respect to the vector of demographic z.
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Proposition 6. If the budget shares take the form (4.5) and (i) Slutsky symmetry
(4.4) holds (ii) the effects of demographics on budget shares are unrestrited in the

sense that g. can take any value, then g' (.) is linear in Inz:

g'(Inp,Inz) =3¢ (Inp) + g (Inp)lnz.

Proof. Applying (4.4) to (4.5) we have
W+ g5+ (W + ) g, = bl + gl + (W' + ') g3
Taking derivatives of both sides with respect to In x then with respect to z gives:
hlg;, = higl,.

Invoking condition (77) in the statement of the proposition we can set h! equal to
zero and h? non-zero, which implies that g%, = 0 so that A’ (Inp,Inz) is linear in
Inz. 1

This demonstartes that the additive form given in (4.1) will only be consistent
with utility maximisation if we restrict the way in which demographics affect
budget shares, or if preferences are Piglog.

There is, however, a similar form that is flexible and also consisitent with utility

maximisation. This is the translated additive form for within-period responses:
wip = ; (z) + g; (Inz — ¢ (2)) (4.6)

Budget shares (4.6) are a generalisation of the partially linear model. Interest-
ingly this is precisely the shape invariance extension to the partially linear model
considered in the work on pooling nonparametric regression curves in Hardle and

Marron (1990) and Pinske and Robinson (1995). This analysis has recently been

32



applied to the estimation of equivalence scales in the papers by Pendakur (1997)
and Blundell, Duncan and Pendakur (1988). They note that independence of base
equivalence scales results in (4.6) with log equivalence scales given by ¢(z).
Suppose z is discrete, and ¢(z) = ¢z and «;(2) = ;2 with a base group defined
at z equal to zero. Suppose also that the unrestricted nonparametric regression
has been estimated for each subgroup separately and write the resulting kernel

regression estimates as

-~z
~z T

4
1

The restrictions for the extended partially linear model (4.6) may be written

g9 = ai+g;(Inx - ¢z), (4.8)

or
rifi = firl(nz —¢z) + aif; fi (Inw — ¢2). (4.9)

Pinske and Robinson (1995) establish asymptotic convergence results for the
estimator of a; and ¢ that results from minimising the integrated squared loss

function
Ly(a;0) = /A?\,(ln z; o, ¢)w(lnz)dInz (4.10)
where
Ayv(Inz; oy, @) = rifd — fir%(ne — @) — asfF L (Inz — ¢). (4.11)
4.3. Endogeneity in log expenditure

To adjust for endogeneity we adapt the popular augmented regression tech-

nique (see Holly and Sargan (1982), for example) to the semiparametric frame-
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work. In particular, suppose x is endogenous in the sense that
E(e|lnz) #0 or E(w|Inz) # g(lnx). (4.12)

In this case the nonparametric estimator will not be consistent for the function of
interest. It will not provide the appropriate counterfactual: how do expenditure
share patterns change for some given change in total expenditure? However,

suppose there exists a variable ¢ such that

Inx = n + v with E(v|¢) = 0. (4.13)

Moreover, assume the following linear conditional model holds

w=g(lnz)+vp+e (4.14)
with
E(ellnz) =0. (4.15)
Note that
w—E(w|lnz) = (v— E(v|lnx))p +e. (4.16)

The estimator of g(Inz) is given by
gn(Inz) = my (Inz) — my (Inz)p. (4.17)
In place of the unobservable error component v we use the first stage residuals
v=Inz—-(7 (4.18)

where 7 is the least squares estimator of 7. Since T and p converge at /n

the asymptotic distribution for gp,(Inz) follows the distribution of m’(Inz) —
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m;,(Inz)p. Moreover, a test of the exogeneity null Hy : p = 0, can be constructed
from this least squares regression.

Newey, Powell and Vella (1995) have developed a generalisation of this idea
for triangular simultaneous equation systems of the type considered here. They
adopt a series approach to the estimation of the regression of w on In z and v. This
generalises the form of (4.14) and allows an assessment of the additive structure.
They also use a nonparametric regression for the reduced form in place of the
linear model (4.13). In our application we consider extending the model along
these lines by including higher order terms in the residuals v and then testing the
partially linear specification (4.14) against this more general additive recursive
alternative (see also Blundell and Duncan (1998)). The first-stage residual v in is
calculated using the log of disposable in come is used as the excluded instrumental

variable.

4.4. Estimated Engel Curves and Normality

The three figures (4.1) to (4.3) show the estimated Engel curves (budget
share against log total nominal expenditure) for 3 of our 22 commodities, for 3 of
our 20 periods (1975 (circles), 1980 (squares), 1985 (triangles)). These represent
a typical necessity (bread), a luxury (entertainment) and beer which displays a
roughly quadratic logarithmic Engel curve behaviour.

On each Engel curve we plot the points on the chronological SMP paths which
correspond to the 1st, 10th, 25th, 50th, 75th, 90th and 99th percentile points in
the base year (1974). Pointwise 95% confidence bands at these points are also
drawn. Note that, as we would expect, the precision is much lower at the tails

of the outlay distribution. The left to right drift of the Engel curves apparent
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in these figure illustrates the growth in nominal expenditure which took place

between these periods.

Figure 4.1: The Engel curve for Bread

Figure 4.2: The Engel curve for Entertainment

Normality of demands was necessary for the proof of the properties of the SMP

path which we intend to exploit in our test of GARP. Non-parametric regressions
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Figure 4.3: The Engel curve for Beer

of quantity demanded for each commodity for 3 years of data against log total
spending are presented in Appendix A for 1975, 1980 and 1985. There are no
instances of goods behaving as inferior goods. The years illustrated are typical.
The rest of the expansion paths for the remaining periods are available from the

authors.

4.5. Results

Testing GARP

We proceed by estimating non-parametric Engel curves for each commod-
ity group within each time period and calculate g;f (Inzx;) at various comparison
points in the total expenditure distribution. We also control for the number of chil-
dren in the household as described in section 4.2 above. In the first year of our data
we selected the comparison points to be at the 1st percentile, 1st decile, 1st quar-
tile, median, 3rd quartile, 9th decile and 99th percentile points. The comparison

points for the following years were chosen to maximise the power of the test on a
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chronological SMP path which orders the data according to q;.1 R° q; R° q,_; as
described above. By Proposition 1 we know that if this path passes GARP then
no path which preserves the same preference ordering will violate GARP. We also
present the annual median and mean (non-SMP) paths for comparison. We define
a (T x T') indicator matrix m and compute the transitive closure m in which we
know that by construction of the SMP path every element in the lower triangle
must be one since either q; R q; ; or q; P q; ;- We then check for rejections in the
corresponding direct and transitive comparisons i.e. if q; R q;—; (or q; P q;_;)in
the lower triangle then q;_; P q; (or q;—; R q;) in the upper triangle indicates a
rejection of GARP.

Table 4.1: Number of rejections of GARP, by size of test.

Comparison paths Size of test
Raw | 0.300 | 0.200 | 0.100 | 0.050 | 0.010

SMP path starting points:

1st percentile point 1 1 1 0 0 0
1st decile point 1 1 1 1 1 0
1st quartile point 1 1 0 0 0 0
Median 1 1 1 1 1 1
3rd quartile point 2 2 2 0 0 0
9th decile point 11 6 6 3 1 1
99th percentile point 28 21 21 1 0 0
Median 0 0 0 0 0 0
0 0 0 0 0

Mean 0

Table 4.1 shows the number and pattern of rejections for the our full budget

system of 22 goods. Each column refers to a different size of test at each point.
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As can be seen, GARP is rejected for a large number of points in the upper tail of
the outlay distribution but these rejections are not very ‘significant’ statistically.
GARP is, however, rejected in the data at the 1% level for the median SMP path
and the SMP path starting at the 9th decile point. However, in each case, the
rejection only occurs for a single comparison point and, except for this point, the
large number of rejections in the raw data are considerably reduced by the use of
pointwise confidence bands.

It is interesting to observe that there are no rejections even in the raw data
for the median or mean (non-SMP) paths. This is consistent with the observation
which arises in tests of GARP on aggregate data that if the budget constraint
is allowed to shift much either way between comparison points, as it does for
median or mean total expenditure, then there is little chance of being able to find
demands that cannot be rationalised.

From the GARP test results we note that there are many rejections of revealed
preference conditions in the upper tail of the total expenditure distribution and
a few in the middle. As discussed above the algorithms we present which are
designed to bound well-behaved indifference curves will only converge if there are
well-behaved indifference curves to bound. Given the rejection of GARP in the
raw data the algorithms will not be able to find coherent indifference curves using
data for the entire period. However, we can run the algorithms for non-rejecting

sub-periods and the results of this are presented in Table 4.2.

The table shows the largest continuous sub-period in which the algorithms

are able to bound the indifference curve. For example, for the starting point at
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Table 4.2: Continuous periods of convergence.

Periods

82 83 | 84 85 86 | 87 88 89 | 90 | 91 | 92 | 93

1st

10th

25th

50th

75th

90th

99th | | |

median total outlay in 1974 we are able to bound a curve using the expansion
paths and price data for 1974 to 1985 inclusive, and using any of the periods
within the interval as the base. If we add 1986 to the set of admissible periods
the algorithm fails to converge (we already know from the SMP path that 1985
and 1986 are not rationalisable). We then start again using the 1986 point on the
median SMP path as our starting point. In all, for the median we find the entire
period breaks down into two sub-periods within which we are able to bound an
indifference curve. Similarly the 1st and 9th decile paths break into two and four

sub-periods respectively, while the 99th percentile breaks down into five.

Allowing for Changes in Preferences

The GARP test itself gives us no clue as to the good or goods which are causing
the rejection. We choose tobacco as our conditioning good and argue that we
have reasonable prior belief that preferences for tobacco may have changed over
the period with the arrival of new information on the health effects of smoking.
We apply the conditioning procedure to the Median SMP path to the path of

demands illustrated below. This allows us to account for changes preferences
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Figure 4.4: The median SMP quantity path for tobacco.

by calculating an adjusted price for tobacco which is consistent with GARP and
should, for example, allow the run of non-rejecting periods to be extended passed
the first rejection on the median SMP path.

In this case the rejection is being caused by pgs;dss > Pgsdss While the chrono-
logical SMP path requires pg;qss = PigQss- Figure 4.4 shows the quantity of
tobacco demanded on the median SMP expenditure path. Between 1985 and
1986 quantity demanded falls by 8.9%. At the same time there is a price increase
of just 7.41%. The minimum neceassary adjustment of the price such that it ratio-

nalises the demand fall is such that the virtual price increases by 17.5% between

1985 and 1986.

Table 4.3 below report the results for the re-run of the GARP test with the
actual price series for tobacco replaced by the virtual price in 1985. Of course
this adjustment changes the relative prices not just between the years in question
(85/86), but between 1985 and every other year. Further, given that the confi-

dence intervals for the pairwise tests are based on price-weighted sums of kernel
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regressions, changes in the prices can affect the standard error of the price/demand
bundles and changes the results of the statistical tests of GARP. Table 4.3 reports
the new evaluation of GARP in which the price of tobacco in 1985 is replaced by
its virtual price. Looking at the column of rejections of GARP in the raw data we
see that this change has also corrected rejections on the 1st and 3rd quartile SMP
paths. This is because these rejections also referred to the 85/86 comparisons and
in each case the minimum virtual price adjustment to the tobacco price was less
than that required by the median path. The adjustment for the 1st quartile SMP
path was such that, in order to rationalise the 7.6% demand fall, a minimum price
increase of 9.9% was required. The adjustment for the 3rd quartile SMP path was
such that, in order to rationalise the 11.5% demand fall, a minimum price increase

of 12% was required.

Table 4.3: Number of rejections of GARP, by size of test, virtual price of tobacco
(1985).

Comparison paths Size of test
Raw | 0.300 | 0.200 | 0.100 | 0.050 | 0.010
SMP path starting points:
1st percentile point 1 1 1 0 0 0
1st decile point 1 1 1 1 1 0
1st quartile point 0 0 0 0 0 0
Median 0 0 0 0 0 0
3rd quartile point 1 1 1 0 0 0
9th decile point 10 6 6 3 1 0
99th percentile point 28 15 15 1 0 0
Median 0 0 0 0 0 0
Mean 0 0 0 0 0 0
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Bounds on the True Cost-of-living Index

Using the virtual price of tobacco for the median SMP path we derive GARP-
based bounds on the cost-of-living index over the period 1974 to 1993 using welfare
at 1974 median total expenditure as our reference welfare level. The results are
reported in Tables 4.4 and 4.5. Table 4.4 summarises some popular parametric
indices, some of which represent first-order, and some of which represent second-
order approximations to true indices based on any arbitrary cost-function. These
indices can also be thought of as corresponding exactly to true indices under
various assumptions regarding the precise form of preferences (the Paasche and
Laspeyres, for example, are exact for Leontief preferences, the Toérnqvist is exact
for translog).Table 4.5 reports various nonparametric bounds which have been
suggested in the literature and the GARP-based bounds (in the final column)
derived using the algorthims described above.

Table 4.5 reports the bounds on the true 1974 median welfare-based cost of
living index which can be derive without any assumption on functional forms.
The bounds provided by Lerner (1935-36) are simply that the true index (being
a weighted average of price changes) must lie somewhere between the maximum

and the minimum ratio of the price changes of all goods: i.e .

m{p_ 201} < Llumpe) gm{p_ 201}
¢ D74 c (U74> p74) v D74

Pollak (1971) improves this by linking Lerner’s result with the original Koniis
(1924) result that the Laspeyres index approximates the true base-referenced cost
of living index from above, i.e.

/ clu i
bl ¢ L0m PO < {2 si =01, 0m.
P74974 c (u74, P74) t D74
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The bounds from classical revealed preference (GARP) restrictions of the type
used by Varian (1982) (i.e. those which utilise the restrictions implied by prices
and demands at observed annual mean expenditures to bound a level set of utility
in commodity space) are reported in the next column and the bounds derived

from the procedure we describe above are reported in final column.

Table 4.4: GARP bounds and popular price indices, 1974 to 1993; virtual price
of tobacco (1985).

Year | Paasche Laspeyres Fisher’s Tornqvist Torngvist Divisia Divisia
(Chained) (Chained)
74 1000 1000 1000 1000 1000 1000 1000
75 1215 1232 1223 1223 1220 1226 1223
76 1516 1530 1523 1523 1520 1529 1528
7 1762 1787 1775 1774 1774 1781 1783
78 1931 1957 1944 1944 1946 1950 1960
79 2086 2119 2102 2102 2106 2106 2121
80 2463 2514 2488 2489 2493 2494 2514
81 2780 2841 2810 2812 2814 2833 2841
82 3093 3189 3140 3143 3148 3168 3178
83 3260 3381 3320 3325 3337 3361 3371
84 3408 3558 3482 3488 3498 3527 3534
85 3541 3709 3624 3633 3646 3674 3685
86 3700 3911 3804 3812 3833 3848 3875
87 3825 4035 3929 3936 3946 3985 3990
88 3922 4163 4041 4052 4064 4103 4112
89 3413 4379 4253 4262 4270 4327 4321
90 4406 4669 4536 4550 4553 4623 4607
91 4723 5044 4881 4898 4907 4988 4966
92 4996 5437 5212 5236 5258 5347 5322
93 5177 5650 5409 5430 5428 5582 5498
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Table 4.5: GARP bounds and other nonparametric bounds, 1974 to 1993; virtual

price of tobacco (1985).

Year Lerner Pollak Classical RP GARP

74 1000 1000 1000 1000

75 | [1025,1721] [1025,1232]  [1206,1232] [1215,1228]
76 | [1182,1985] [1182,1530] [1431,1530] [1515,1530]
77 | [1239,2590] [1239,1787]  [1700,1787]  [1763,1781]
78 | [1385,2513] [1385,1957]  [1894,1957]  [1937,1957]
79 | [1461,2636] [1461,2119]  [2058,2119]  [2094,2119]
80 | [1734,3142] [1734,2514] [2442,2514]  [2479,2509]
81 [1770,4077] [1770,2841]  [2687,2841]  [2802,2838]
82 | [1821,4287] [1821,3189] [2983,3189]  [3124,3172]
83 | [1828,4924] [1828,3381]  [3197,3381]  [3316,3369]
84 | [1790,4921] [1790,3558]  [3329,3558]  [3474,3530]
85 | [1836,5022] [1836,3709]  [3228,3709]  [3622,3682]
86 | [1900,5463] [1900,3911]  [3308,3911]  [3809,3873]
87 | [1920,6049] [1920,4035]  [3300,4035]  [3919,3988]
88 | [1923,6143] [1923,4163] [3370,4163]  [4037,4109]
89 | [1996,6397] [1996,4379]  [3356,4379]  [4241,4318]
90 | [2079,6637] [2079,4669]  [3403,4669]  [4521,4603]
91 [2109,7507]  [2109,5044]  [3911,5044]  [4870,4961]
92 | [2091,8353] [2091,5437]  [3888,5437]  [5212,5316]
93 | [2066,9098] [2066,5650]  [3841,5650]  [5379,5491]

We find, as did Varian (1982) and Manser and McDonald (1988) that clas-
sical non-parametric/revealed preference bounds based on the average demand
data gives little additional information on the curvature of the indifference curve
through commodity space and hence the bounds on the true index are wide. How-
ever, by the use of expansion paths we can dramatically improve these bounds.

Although neither index is base period utility referenced!”, in practice both the

1"The Tornqvist index which links period ¢ with period s, for example, is referenced at the

utility level (usut)l/ 2,

45



Figure 4.5: GARP bounds, the Paasche and Laspeyres indices, 1974 to 1993.

Tornqvist index, Fisher’s index and the Divisia perform well in approximating
the true index. Figure 4.5 illustrates the Paasche and Laspeyres indices and the
GARP bounds. The GARP bounds derived using the methods described are given
by the dashed lines. Figure 4.6 illustrates the GARP bounds and the Lerner and
Pollak nonparametric bounds. The Lerner bounds are the outer solid lines, the
Pollak lower bound is the same and the Lerner lower bound, the upper bound
is the lower of the two solid lines above the GARP bounds. This corresponds
exactly to the Laspeyres index. Figure 4.7 illustrates the classical RP bounds of
the type calculated by Varian (1982) and the GARP bounds.

Figures 4.8 to 4.11 show indices from tables 4.4 and 4.5 expressed as propro-
tional differences from the centre of the GARP bounds. From these we can see
that the GARP bounds represent approximately +2% of the level of the centre
of the bounds by 1993. The Paasche and Laspeyres indices under- and over-state
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Figure 4.6: Lerner and Pollak bounds and GARP bounds, 1974 to 1993.

Figure 4.7: Classical RP bounds and GARP bounds, 1974 to 1993.

47



the true index by 5% and 4% of the level by 1993. Even though they are not
uys-referenced, the chained Divisia and the Tornqvist indices give good de facto
approximations to the true index. The improvement to the previously available
nonparametric bounds which our procedure gives is highlighted in figure 4.11
which shows that the lower classical RP bound capture only 70% of the increase

in the true cost of living over the period.

Figure 4.8: GARP bounds, Paasche and Laspeyres indices; proportional difference
from the centre of the GARP bounds, 1975 to 1993.

The cost of living indices so far presented were based on the utility level
associated with median 1974 total outlay (the rejection between 1985 and 1986
was overcome by utilising the conditioning procedure described in section 2.5).
We can begin to investigate the distributional effects of price changes by applying
the same procedure to different points in the total outlay distribution. Figure 4.12

shows the GARP bounds on the true cost of living index which compares 1985
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Figure 4.9: GARP bounds, chained and unchained Térnqvist indices; proportional
difference from the centre of the GARP bounds, 1975 to 1993.

Figure 4.10: GARP bounds, chained and unchained Divisia indices; proportional
difference from the centre of the GARP bounds, 1975 to 1993.
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Figure 4.11: GARP and Classical RP bounds; proportional difference from the
centre of the GARP bounds, 1975 to 1993.

and 1974, for the 10th and the 90th percentile points of the 1974 total outlay
distribution (as table 4.2 showed, this is the longest period over which we can
bound coherent indifference curve for both of these starting points without using
virtual prices). The bounds for 10th and 90th percentile points do not overlap
and indicate greater rise on the cost of living for poorer, compared to richer,

households over this period period.

5. Summary and Conclusion

In this paper we have applied nonparametric demand theory to the nonpara-
metric statistical analysis of consumer demand. We exploit the idea that price

taking individuals in the same market face the same relative prices, in order to
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Figure 4.12: GARP Cost of living index bounds 1985 by percentile point,
1974=1000.

smooth across the demands of individuals for each common price regime. We show
how this provides a conventional stochastic structure within which to examine the
consistency of individual data and revealed preference theory. We also presents a
method of maximising the power of these tests of revealed preference. We have
discussed the way in which we might allow for taste changes for a good from
which the other goods are not separable. We also present algorithms which allow
us to place bounds on level sets of utility in commodity space. This allows the
calculations of improved bounds on true cost-of-living indices. The heterogeneity
conditions for carrying out both positive and welfare analysis were also discussed.

Using a long time series of repeated cross-sections from the 1974-1993 British
Family Expenditure Surveys we were able to examine whether revealed prefer-
ence theory is rejected. We show that GARP is not rejected for long periods,

particularly when we allow for sampling/stochastic variation. Allowing for taste
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changes in tobacco in one year is shown to reduce the number of the rejections
further. We also show that we can derive bounds on cost of living indices from our
analysis which appear to be much tighter than those based on the revealed prefer-
ence restrictions implied by demands at, say, annual mean total expenditure. We
also note that, (despite the fact that neither of these indices are themselves base
period referenced) the Tornqvist and the chained Divisia indices perform well as

empirical approximations to the true base-period referenced index.
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Appendices

A. Data Appendix

The 22 commodity groups are defined as

Table A.1: Commodity definitions

Commodity Group

Beer Beer, on and off licence sales.

Wine Wine, on and off licence sales.

Spirits Spirits, on and off licence sales.

Meat All meat & fish

Dairy All diary products, oils and fats.
Vegetables Fresh, tinned and dried vegetables & fruit.
Bread Bread, flour, rice & cereals.

Other foods

Tea, coffee, drinks, sugar, jams & sweets.

Food consumed outside the home

Restaurant & canteen meals.

Electricity

Account & slot meter payments.

Gas

Account & slot meter payments.

Adult clothing

Adult clothing

Children’s clothing and footwear

Children’s clothing & footwear

Household services

Post, phone, domestic services & fees.

Personal goods and services

Personal & chemist’s goods & services.

Leisure goods

Records, CD’s, toys, books & gardening.

Entertainment Entertainment.

Leisure services TV licences & rentals.

Fares Rail, bus & other fares.
Motoring Maintenance, tax & insurance.
Petrol Petrol & oil

Tobacco Cigarettes, pipe tobacco & cigars.
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Table A.2: Total nominal expenditure: Annual descriptive statistics.

Year | No. of Obs Mean Std Dev. 10%  50%  90%

1974 2640 35.11 15.55 19.00 31.97 54.20
1975 2828 41.92 18.18 22.80 38.45 64.60
1976 2780 47.09 20.51 25.61 4295 73.21
1977 2854 54.35 24.31 2994 4954 85.24
1978 2751 59.59 25.17 3296 5492  90.97
1979 2698 70.23 31.61 37.29 64.01 109.54
1980 2885 82.94 36.75 44.60 76.17 128.61
1981 3111 90.62 41.57 49.53 82.03 142.41
1982 3001 96.60 42.61 52.78 87.94 151.36
1983 2898 105.69 49.05 56.54 95.71 166.93
1984 2863 111.03 53.75 58.33  99.00 175.81
1985 2915 118.60 57.53 60.49 106.58 190.94
1986 2918 126.42 61.63 64.44 111.96 206.23
1987 3060 136.23 68.35 67.74 120.94 225.42
1988 3152 147.86 76.44 71.10 130.72 241.23
1989 3242 157.44 78.98 78.29 140.64 255.78
1990 2968 174.51 92.07 84.65 154.41 286.29
1991 3088 183.12 94.27 90.52 162.94 300.85
1992 3217 188.37 88.08 95.35 170.39 301.20
1993 3078 202.64 107.44  99.37 177.57 333.83
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B. Quantity against log Total Nominal Expenditure for each
commodity group; 1975, 1980 and 1985.

These figures show adaptive kernel estimates of the relationship between quantity
demanded for each good and the log of total nominal household expenditure on
all goods for three years of the data; 1975, 1980 and 1985. Each kernel regression
has the percentile (1st, 10th, 25th, 50th, 75, 90th, 99th) chronological SMP path

points and corresponding pointwise 95% confidence intervals marked on the curve.
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