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Abstract We study large finite club economies in which agents
can belong to several clubs, and care about the characteristics
of the other club members. Club memberships must be integer
consistent in aggregate. We show that states in the approxi-
mate core can approximately be decentralized by prices for pri-
vate goods and for club memberships, that the approximate core
is nonempty, and that approximate club equilibria exist. Our
arguments use the convexification tools used for private goods
economies, but we also develop a new tool to address the con-
sistency requirement on memberships that are special to club
economies. This tool allows us to overcome the integer consis-
tency problems that are avoided in our (1999) paper by assuming

a continuum of agents.

1 Introduction

It is well known that for large finite economies with indivisibilities, including
club economies, the core might be empty, and equilibrium might not exist.
In Ellickson, Grodal, Scotchmer and Zame (EGSZ 1999), we avoided these
problems by assuming that there is a continuum of agents. In this paper we
develop a tool that helps us to analyze large finite club economies. We show
that states in the approximate core can approximately be decentralized by
prices for private goods and club memberships, that the approximate core is
nonempty, and that approximate club equilibria exist.

Similar approximation results have long been known for private goods
economies, and rely on approximate versions of Lyapunov’s convexity the-
orem. The club problem adds a new dimension, namely, the problem of
ensuring that club memberships are consistent in the sense described below.
To address the problem of consistency, we develop an essential tool, namely,
Lemma 3.1.



As in EGSZ (1999), we describe a club type as a pair consisting of a
description of the external characteristics of its members and a specified
activity. We assume that there is a finite number of club types, each having
a finite number of members, but many clubs of each type may be formed.?
We also assume that the number of clubs an agent can join is bounded.

Intuitively, the boundedness assumptions should lead to competitiveness
in a large economy. This is for two reasons. Individual agents have limited
market power because they only have external effects on a bounded number
of other agents, and clubs have limited market power because they could
be duplicated by many other clubs of the same type. We validate these
intuitions by showing that states in the approximate core (hence, the core)
can approximately be decentralized by prices for private goods and club
memberships.

We define a club membership as an opening in a club available to agents
with specified characteristics, and treat these memberships as commodities
in parallel to private goods. This parallel treatment leads naturally to trade
and pricing of individual memberships, and easily accommodates that agents
can have memberships in many clubs.? Despite this parallelism, club mem-
berships introduce an important complexity, namely, that they must be con-
sistent across the population. The allocation of club memberships must be
such that all places in a club are filled as soon as just one member is as-
signed to it. Consistency must hold simultaneously for all types of clubs,
and allow that every individual belongs to several clubs. In our finite econ-
omy, the consistency condition is particularly hard to satisfy, as compared to
the continuum, because the number of clubs of each type must be an inte-
ger. As mentioned above, this might lead to nonexistence of equilibrium and
emptiness of the core (Ellickson (1973), Bewley (1981), Scotchmer (1997)).

2Thus any club type is small relative to a large economy. This is the basic idea un-
derlying club theory. The idea that optimal consumption groups are small was originally
derived by Buchanan (1965) from congestion costs.

3In the previous literature, the admissions price to a single club is constructed as a
willingness to pay. It is not obvious how to extend this technique to multiple memberships.



Also, in private goods economies the core and the set of equilibria might
be empty when agents do not have convex preferences. This has led to
notions of approximate core states and approximate equilibria (see e.g. Kan-
nai (1970), Grodal and Hildenbrand (1974) and Anderson (1985)), theorems
on existence of equilibrium states according to these notions (Starr (1969),
Hildenbrand, Schmeidler, and Zamir (1973), Grodal (1974), Grodal, Trockel
and Weber (1984)), and to decentralization theorems for elements in the
approximate cores (see e.g. Grodal and Hildenbrand (1974), and Anderson
(1985)). In this paper we define the fat e-core for club economies in parallel
to Anderson (1985) for private goods economies. This notion of approximate
core is based on the requirement that it costs a per-capita amount e of each
commodity to form a blocking coalition. If € = 0, the fat e-core is the core.
For a given € > 0, any state in the fat e-core can approximately be decen-
tralized in the sense that there exist prices for private commodities and for
the club memberships such that all clubs have balanced budgets and such
that the agents’ consumptions are “demand-like” on average. The degree of

approximation only depends on £ and some bounds on the economy, is inde-
1
1A
A is the set of agents. Hence our result is the analogue for club economies

pendent of the number of agents, and converges to € at the rate where

to Anderson’s (1978,1985) theorems for private goods economies.

Our theorem implies that the strong and weak e-cores defined by Kannai
(1970), as well as the core itself, can similarly be decentralized. However we
prove the decentralization theorem for the fat e-core because, as we show in
a simple example, these other cores might easily be empty.

In order to prove that the fat e-core is nonempty for a large economy (and
also for independent interest), we define a notion of approximate equilibrium,
show that an approximate equilibrium exists for all economies, and then
show that all approximate equilbrium allocations are contained in the fat
e-core if the economy is sufficiently large. In the approximate equilibrium,
all agents except at most a given number are optimizing. Hence, in large
finite economies, an approximate equilibrium differs from a club equilibrium



only in the sense that a fixed number of agents are not optimizing, but their
proportion is negligible.

As mentioned above, the main difficulty in extending our results from the
continuum case to large finite economies is in ensuring that club memberships
are integer consistent. Our main tool to overcome this difficulty is Lemma
3.1: Starting from an arbitrary assignment of memberships, there is a bound
on the number of agents that must be removed from the economy in order to
guarantee that the memberships of the remaining agents are integer consis-
tent. This bound depends on how far from consistent the original assignment
was, but does not depend on the number of agents in the economy.

The description of the club economy is in Section 2. The main lemma
is in Section 3. In Section 4 we define the fat-e core and show that it can
be approximately decentralized. In Section 5 we introduce our notion of
approximate equilibrium, and use it to show nonemptiness of the fat-e core.
Proofs are collected in Section 6.

2 Club Economies

2.1 Private goods

Throughout, that there are N > 1 perfectly divisible, publicly traded private
goods; thus the space of private goods is ]Rf . For z,2' € ]Rf we write x > 2/
to mean z,, > x, for each n, x > 2’ to mean that x > 2’ but  # 2/, and
x >> 7' to mean that x,, > z, for each n. We write |z| = X | |z,|, and we
let A={peRY: [p|=1}.

2.2 Clubs

Clubs are defined as in EGSZ (1999), where the model is discussed in more
detail.



We will describe a club type by the number and characteristics of its
members and the activity in which the club is engaged.

Let € be a finite set of external characteristics of potential members
of a club. An element w € 2 is a complete description of the external
characteristics of an individual that are relevant for the other members of a
club.

A profile (of a club) is a function 7 : Q@ — Z, = {0,1,...} describing the
external characteristics in a club. For w € Q, 7m(w) represents the number of
members of the club having external characteristic w. For a club with profile
7, || = 3 peq T(w) is the total number of members in the club.

There is a finite set I' of activities available to a profile of agents.

A club type is a pair (m,7) consisting of a profile and an activity v € T
We take as given a finite set of possible club types Clubs = {(m,v)}. In
particular, there is a bound on the number of members of a club. Formation
of the club (7,~) requires a total input of private goods equal to inp(w,vy) €
RY.

A club membership is an opening in a particular club type for an agent

with a particular external characteristic; i.e., a triple m = (w, 7, y) such that
(m,7) € Clubs and 7(w) > 1. Write M for the set of club memberships.

Each agent may belong to many clubs or to none. A [ist is a function
¢: M —{0,1,...}, where ¢(w, ,) specifies the number of memberships of
type (w,m,~y). Write:

Lists = {¢: ¢ is a list }
for the set of lists. Lists is a set of functions from M to {0,1,...}, but we

frequently view it as a subset of R, which is the set of functions from M
to RR.

For an arbitrary list ¢ we define:

)= > é(w,ﬂ',’y)iinp(ﬂ,’y) e RY

(w,my)EM ‘ﬂ-’



This is the total bundle of inputs that an agent consuming list £ would have
to contribute if inputs to clubs were imputed equally to all members of all
clubs.

2.3 Agents

A complete description of an agent a consists of his/her external charac-
teristics, choice set, endowment of private goods, and utility function. An
external characteristic is an element w, € 2. The choice set X, specifies the
feasible bundles of private goods and club memberships, so X, C ]R_]X x Lists.
For simplicity, we assume that the only restriction on private good consump-
tion is that it is non-negative, so that X, = RY x Lists(a) for some subset
Lists(a) C Lists. We assume that for all ¢ € Lists(a) we have {(w,7,7) =0
for every (w,m,y) € M for which w # w,; that is, no individual may choose
membership in any club type containing no members of his/her external
characteristic. Moreover we assume that 0 € Lists(a). The endowment is
denoted e, € ]Rf . The utility function is defined over private goods con-
sumptions and club memberships and is thus a mapping u, : X, — IR. We
assume throughout that utility functions u,(-,¢) are continuous and strictly
monotone in private goods.

2.4 Club Economies

A club economy & is defined by a finite set of private commodities, a finite
set of club types and their inputs, a finite set of agents A, and, finally, a
mapping a — (wa, Xa, €4, Uq) that assigns to each agent a € A his external
characteristic, choice set, endowment and utility function.

We shall consider classes of economies where each class is identified ac-
cording to the number of private commodities N, by the number of club
memberships |[M], by a bound M* on the maximum number of members of
any club type, by a bound W on individual endowments, that is, e, < W1



for all agents in the economy, and by a bound M on the number of club mem-
berships an individual may choose. Let Lists); = {¢ € Lists : |[{| < M},
then Lists(a) C Lists,, for all a € A.

We write Econ(N, | M|, M*, W, M) for the club economies with the stated
bounds. Clearly these bounds also give a bound on the number of elements
in Lists), and on the number of external characteristics such that m(w) > 1
for some club type (7,7). Without loss of generality we identify 2 with these
external characteristics. Hence |Q] < | M].

We say that endowments are desirable in a club economy if for every agent
a € A and for all ¢ € Lists(a), uq(€q,0) > u,(0,¢). This condition will be

used in our existence argument.

2.5 Feasible States

A state of a club economy & is (, i1) where (z, 1) : A — RN x RM represents

agents’ consumptions.
Individual feasibility means (x4, i) € X, for all a € A.

Social feasibilty entails market clearing for private goods and consistent
matching of agents. We define consistency as a property of membership
vectors, i € RM. We say that an aggregate membership vector i € R™M
is integer consistent if for every club type (m,7) € Clubs, there is a non-
negative integer a(m,y) such that

Alw,my) = almy)ww),  cachweQ

The coefficient (7, 7y) is the number of clubs of type (m,~) accounted for by
the aggregate membership vector . Define

Cons* = { i € RM : [ is integer consistent }

We say that a list assignment p : B — Lists is integer consistent for B if
> wcB Ma 1S integer consistent, i.e., > ,cp fta € Cons™.

7



In the following we will also use Cons, defined as the linear subspace
spanned by Cons™.

Definition 2.1 A state (z, u) is feasible for B C A if it satisfies the follow-
mg requirements:

(i) (individual feasibility) (z4, o) € X, for each a € B

(ii) (material balance) YaeBTa + YaeB T(Ma) = Yaes €a

(iii) (integer consistency) > ,cp tta € Cons”

We say the state (x, ) is feasible if it is feasible for the set A itself.

Notice that by integer consistency the agents in B form a(m,7) clubs
of type (m,7) for some non-negative integers «(m,y). The definition of 7
therefore implies that > .cp T(ta) = X (x) a(m,7)inp(7,v). Thus (ii) states
that B’s total endowments equals the sum of B’s private consumption and
the total input that B uses in the clubs they form.

A state of the economy will generally have several clubs of each club type.
Since a state assigns the same inputs to all clubs of the same type, and since
members care only about the external characteristics and not the identities
of members, a list assignment p does not assign membership in particular
clubs, but only in particular club types.

We will use the following notation. For a given family (y,)sep of vectors
in a Euclidean space, we let yg = > ,cp Va4, in particular, for a state (z, u)
and B C A, xp =Y 4ep s and pup = > 4cp Mo The number of consumers in
a coalition B C A is denoted |B|.

3 Preliminaries

The main tools developed in this paper are the following two lemmas, which
underlie our proofs. The lemmas are proved in Section 6.

8



The following lemma implies that if a list assignment v is almost con-
sistent for a coalition B in the sense that the distance from vz to Cons is
bounded, and if B is large, then there is a subset B’ C B such that v is
integer consistent for B’ and the size of B’ is comparable to B.

Lemma 3.1 There exist positive constants K1, Ko such that if B is a finite
set and v : B — Lists,; is a function, then there is a subset B C B such
that

vg € Cons™

and

|B \ B,| S Kldlst (l/B, COHS) + K2

The next lemma Part (a) says that if a list assignment p is integer con-
sistent for B, then B can be partitioned into coalitions that are bounded
independent of p and B, such that p is integer consistent for each of them.
Part (b) states an immediate consequence.

Lemma 3.2 There exists K3 > 0 such that if a list assignment u : A —
Lists); is integer consistent for a coalition B C A, then

(a) B can be partitioned into B = U;e;B* such that |B'| < K3 and p is
integer consistent for each B'.

(b) if By C B, then there exists By such that By C By C B, |Bs| < K3|B|
and [ 15 integer consistent for Bs.

The constants K7, Ky and K3 depend on |[ M|, M* and M, as can be seen
from the proofs.

4 The Approximate Core: Decentralization

Since the core might be empty in finite club economies, we consider approx-

imate cores. The literature contains several notions of approximate core,
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which differ in the resource cost of forming a blocking coalition. In the
strong and weak e-cores as defined by Kannai (1970), the cost is, respec-
tively €1 and €|B|1, where |B| is the size of the blocking coalition. Since
both of these cores might be empty in even large finite club economies, we
use the fat e-core, due to Anderson (1985), where the cost of forming the
blocking coalition is €|A|1, where |A| is the size of the economy. Obviously
the fat-e core contains the strong and weak e-core, and therefore the theorem
below, which states that elements in the fat-e core can be decentralized, also
implies that the strong and weak e-cores can be decentralized.

The fat e-core is defined as follows.

Definition 4.1 For ¢ > 0 we say that a coalition B C A can e-capitablock
a state (x, ) if there is a state (y,v) such that u,(Ya, Va) > Ua(Ta, pa) for all
a € B, v is integer consistent for B, and yg + 7(vg) < ep — ¢|A|L. The fat
e-core of a club economy &, denoted C.(E), is the set of all feasible states
which cannot be e-capitablocked.

Obviously, for each fixed economy, the fat e-core shrinks as € becomes
smaller.

The following example illustrates that the fat e-core can be nonempty
when the strong or weak e-core is empty.

Example 1: Assume that Q = {@}, and that there is only one club type
(m,v) with 2 members, so 7(w) = 2. Hence there is one type of membership,
M = {(w,m v)}. Let inp(m,v) = 0. In addition there is one private good, so
each agent’s consumption set is X = X, = Ry x {{|¢: M — {0,1}}. Agents
have identical endowments e, = 1 and identical utility functions u : X — R,
defined as follows for x > 0.

u(z,0) = 1—e*
u(z,1) = 4z

Let A be the set of agents. A state (x4, fiq)aca is feasible if (x4, pg) is

equal to (z,1) or (z,0) for each a € A, depending on whether the individ-
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ual consumes a club membership or not, > ,ca s = Yscaea = |A|, and
> aca ta = 2 for some o € Z,..

We now show that for all € < i, the weak e-core is empty, irrespective of
how large the economy is, provided |A| is odd.

Let (4, [ta)aca be a feasible state. We show that the state can be weakly
e-blocked. Since there are an odd number of agents, at least one agent, say
ai, is not in a club (u,, = 0). Since he cannot weak e-block, x,, > 1 — €.
Hence there exists an agent, say as, such that z,, < 1+ €. Consider the
coalition (aj,as) and assume they form a club. If a; receives private good
at least i, he receives at least as much utility as in the feasible state. If as
receives at least 1+ e private goods, he receives at least as much utility as in
the feasible state, whether or not he was in a club in the feasible state. They
can weak e-block, since ; 4 (1+¢€) < 2 — 2e. Hence the weak e-core is empty.

In contrast, the fat e-core is nonempty for any € > 0, provided the set of
agents is large enough. The easiest example of an allocation in the fat e-core
is to let each agent consume his endowment, and to form as many clubs of
size 2 as possible, with one leftover agent. Write f* for an allocation of this

type. For any € > 0, f* is in the fat e-core if |A| > $(3).

However, for later use we define a different feasible state f¢ which is in
the fat-e core for [A] > L+ 1. Let (z4,10) = (1 —€,1) for a # a;, and
(Zays pay) = (14+€(JA| —1),0). It is sufficient to consider a blocking coalition
(a1, ay) for any ay. Adding more agents to the blocking coalition would not
improve the ability to block, since the added agents must consume at least as
much private good in the blocking coalition as they consume in the feasible
state f¢, namely 1 — €. In order for the coalition (a1, as) to fat e-block f,
agent a; must consume at least 1(1 — el 1~ <(MI=Dl) and a, must consume at
least 1—e¢, and they must pay €| A| to form the coalition. But this is impossible
since, using |A| > 1 + 1, we have (1 — el "1 (4D (1 —€) + €| A] > 2. &

We now extend Anderson’s (1978,1985) approximate decentralzation the-
orems to the club context. We show that for large finite club economies, fat

11



e-core states can approximately be supported by prices.

Club memberships must be priced as well as private goods, hence (p, q) €
RY x RM. Because we assume that preferences are monotone in private
goods, private goods prices will be non-negative. However, prices for club
memberships may be positive, negative or zero; prices for club memberships
include transfers between agents in a given club — some agents may subsidize
others.

In both the approximate decentralization and aproximate equilibrium we
will require that prices are such that every club type has a balanced bud-
get, that is, for each (m,v) € Clubs, Y cqm(w)q(w,m,v) = p - inp(7,7).
Clearly such membership prices can be decomposed into two parts, one part
corresponding to the value of the member’s share of the required inputs,
ﬁinp(ﬂ,y), and additional 'pure transfers’, say ¢*, so-called because they
transfer purchasing power within a club. The relationship between the mem-
bership prices ¢ and pure transfers ¢* is

1

¢ (w,m,7) = qw,m,7) —p- Winp(ﬂ,v)

Say that ¢* € R™ are pure transfer prices if ¢* € Trans, defined as:

Trans = {¢* € RM : ¢* - u = 0 for each y € Cons*}

Clearly, ¢* € Trans if and only if ¢* - up = 0 for all u € Cons.

In the proofs we use the pure transfer prices instead of the equivalent
membership prices, with budget sets appropriately redefined.

We now come to the decentralization theorem. Following Anderson, we
define two measures of how well a given price system (p,q) € Ax R ap-
proximately decentralizes a feasible state f = (x, u) for an economy €£.

First, for a € A we define
pa(f,0,0) = [(p:@) - (Tay pta) — P - €a] ™

12



pe(f,p,q) =sup[p-ea — (p,q) - (2, )] 2 wa(a!, 1) > ta(a, pta) ]

where we use the notation 7™ = max{r,0}. The number p(f,p,q) measures
how far (z,, 1) lies outside agent a’s budget set. The number p2( f, p, ¢) mea-
sures how much less than the value of his initial endowment the agent a may
spend to get something that is preferred to (x4, t1a). Note that pl(f,p,q) =0
if and only if (x,, ite) lies in agent a’s budget set and that p2(f,p,q) = 0 if
and only if (z,, 1,) is a quasi-optimizing bundle for agent a.

The two measures of Anderson are then

P (fipq) = L > pr(f,p,q)
’A‘ acA

PA(fipq) = L > pa(f,p,q)
’A‘ acA

Definition 4.2 A feasible state f = (x, ) can be ¢—decentralized by prices
if there exist (p,q) € A x R™ such that

() p'(f,p,0) < ¢,
(ii) pQ(f7p7 Q) < ¢ and

(iii) for each (m,7v) € Clubs, ¥, cq m(w)q(w, m,7v) = p - inp(m, 7).

Example 1 (continued): We now show that the feasible state f¢ can
be approximately decentralized. Let the prices be (p,q) = (1,0). Then
pu(f<piq) = 0 for all a # a1, p, (£, p,q) = e(|A] = 1), p3(f¢,p,q) = € for all

a # a1, and pZ, (f<,p,q) < 1. Since p'(f<,p, q) <e, p*(f,p,q) < etz and all
clubs have balanced budgets, it follows that f¢ can be (ﬁ—l—e)—decentralized

&

Theorem 4.3 Let € > 0. There is a constant K such that for any economy
E € Econ(N, M|, M*, W, M), and (z*,u*) € C.(E), the state (z*,p*) can
be (ﬁ + ¢€)-decentralized by prices.

13



The constant is K = W (K (N + |M|)M + Ky + N +|M|), where K; and
K, are the constants from Lemma 3.1.

Remark 4.4 The above theorem also applies to the states in the core, the
strong e-core and weak e-core. However for states in the core and the strong
e-core, the degree of approrimation can be improved.

Corollary 4.5 Let e > 0. There is a constant K such that for any economy
€ € Econ(N, | M|, M*, W, M) :

(i) if («*, p*) isin the core of £, then the state (z*, u*) can be |%—decen’cralized.
(ii) if (z*,p*) is in the strong e-core of &, then the state (z*, u*) can be

ﬁr'e-decentralized.

The corollary follows trivially by letting ¢ = 0 to describe core states,
and since the strong e-core is contained in the fat ﬁ—core.

As in Anderson (1978), Theorem 3 is proved by separating the convex hull
of the modified aggregate net preferred set from a translate of an appropriate
cone. There are two subtleties:

(i) In Anderson (1978), the feasible cone from which the aggregate pre-
ferred set is separated is a translate of the negative orthant. The cone
we use is the product of a translate of the negative orthant and the
subspace Cons representing consistent membership choices. However
in order to ensure that the price vector for the private goods is different
from zero, we separate from a slightly enlarged cone.

(ii) To show that the convex hull of the modified aggregate net preferred set
is disjoint from our translated cone, we will need to show that, if it were
not, we would be able to construct a blocking coalition. To construct a
blocking coalition in which all agents get a preferred bundle, we must

14



throw out a few agents. When we do this, however, we may find that the
membership choices of the remaining agents have become inconsistent.
We use Lemma 3.1 to restore integer consistency of membership choices
by throwing out still more agents.

5 The Approximate Core: Existence

In order to show that the above decentralization theorem is not vacuous, we
show existence of states in the fat e-core.

Theorem 5.1 There is a positive integer K such that for any € > 0 and any
economy € € Econ(N, |M|, M*, W, M) with |A] > £ we have C.(E) # 0.

In order to prove the theorem we introduce a notion of approximate equi-
librium, then show in Theorem 5.3 that such approximate equilibria exist,
and then show in Theorem 5.4 that they are in the fat e-core for a sufficiently
large economy. Theorem 5.1 follows using the constant K = K5, where S
and K are the constants in the Theorems 5.3 and 5.4.

For each non-negative integer S, we define an S-quasi-equilibrium con-
sisting of a feasible state (z, ;1) and prices (p,q) € A x RM. In addition to
being feasible, the state satisfies: (i) all agents are in their budget sets, (ii) all
agents except for at most S are consuming quasi-optimal bundles, and (iii)
the prices are such that every club type has a balanced budget. Clearly, when
the economy is large, i.e., |A| is large relatively to S, an S-quasi-equilibrium
is an approximate equilibrium in the sense that only relatively few agents are

not quasi-optimizing.

Definition 5.2 Let S be a positive integer. An S-quasi-equilibrium consists
of a feasible state (x, 1) and prices (p,q) € A x R™M, satisfying the following
conditions:

15



(i) (budget feasibility for individuals)
Forevery a€ A (p,q) - (Tarfia) < p- eq

(ii) (all except S agents optimize)
There is a set of agents D C A such that
(a) |D]<S;
(b) fora € A\ D, ua(xq, to) > Ua(Tas fta) = (P, q) - (25, 1) 2 P - €a;

(iii) (budget balance for club types)
For each (m,v) € Clubs, 3, cqm(w)q(w, 7, v) = p - inp(7,7)

In Example 1, the feasible state f*, together with prices (p,q) = (1,0), is
a l-equilibrium.

Clearly an S-(quasi-)equilibrium is an S’-(quasi-)equilibrium for 5" > S.

An S-equilibrium is defined in the obvious way; for the relationship with
S-quasi-equilibrium, see EGSZ (1999).

Theorem 5.3 There is a positive integer S such that an S-quasi-equilibrium
ezists for any € € Econ(N, |M|, M*, W, M) in which endowments are desir-
able.

The integer S depends on the parameters of the class of economies ac-

cording to
S=N+ M|+ KMN +2M|)+ K,

where K7 and K5 are the constants defined in Lemma 3.1.

The proof of Theorem 5.3 is similar to the proof of existence of club equi-
librium for the continuum in EGSZ (1999). However, since we now have a
finite economy, the aggregate excess demand correspondence does not nec-
essarily have convex values. Hence we must face directly the nonconvexity
and integer consistency problems. These problems are overcome by using
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the Shapley-Folkmann theorem and especially Lemma 3.1. Having found
a point in the convex hull of agents’ excess demand functions, we use the
Shapley-Folkman theorem to select a large subset of agents whose consump-
tions of private goods are in their demand, and then use Lemma 3.1 to find
a smaller (but still large) subset whose club memberships are integer consis-
tent. The number of agents excluded from the original economy is bounded
independent of |A|.

We now turn to the connection between the set of S-equilibria and the
fat e-core.

Theorem 5.4 There exists a constant K such that for any € > 0 and any
non-negative integer S > 0 and any economy £ € Econ(N, M|, M*, W, M)
with |A| > £5 qll S-quasi-equilibrium states for £ belong to C.(E).

The proof of Theorem 5.4 follows familiar lines, except that we must again
use our basic lemmas, in particular Lemma 3.2, to achieve a contradiction

from the assumption that a coalition can fat e-block.

6 Proofs

The proofs of Lemma 3.1 and Lemma 3.2 rely on the following preliminary

lemma.

We say that a non-empty subset H C Z is closed under addition and
relative subtraction if:

(i) z,2' e H=z+2" € H

i) v,/ e Hyx—2' >0=>2x—2' € H
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We say that G C 'H generates ‘H if Y gn(y)y € H for every set of
non-negative integers {n(y);y € G}, and if for every x € H there exist non-
negative integers {n,(y);y € G} such that = =3, 5n.(y)y .

Lemma 6.1 Every nonempty subset H C Z'} which is closed under addition
and relative subtraction is generated by a finite set.

Proof of Lemma 6.1 For each integer k > 0, write Hy, = {x € H : |z| < k}.
We first establish the following claim:

Claim There is an integer k such that every element of H domi-
nates some nonzero element of Hy. That is, for each x € H there
isay € Hg,y ~0 such that x > y.

To prove the Claim, suppose the Claim is false. Then for each integer

¥ € 'H which does not dominate any element of Hj. In

k there is an x
particular, ¥ ¢ Hy, so |2*| > k. For each coordinate 1 < i < n, the sequence
(2%) is either bounded or not. If it is bounded we may use the fact that
elements of H have non-negative integer coordinates to extract a subsequence
that is constant; if it is unbounded we may extract a subsequence that is
strictly increasing to infinity. Applying the same reasoning to each coordinate
in turn, we may extract a subsequence (z%) that is non-decreasing; i.e.,
aki < gFi+1 for each j. Set k* = |z*|. Because k; — oo, there is an index j*
such that kj > k*. Since i > 2% for every j, it follows that a** > zF1.
On the other hand, 2" is an element of Hj. which is a subset of ij*, SO
z¥* dominates an element of ij*. This is a contradiction, so we obtain the

Claim.

Now let G = Hy; clearly G is finite. We assert that G generates H.
Obviously, a combination of elements of G is in H, by property (i). We
must show that every element of H can be written as a non-negative integer
combination of elements of G. Note that

H=JH,
r=1
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Hence it suffices to show that for each r, every element of H, can be written
as a non-negative integer combination of elements of G. To see this, suppose
not. Then there is a smallest index r» and an element of H, which can
can not be written as a non-negative integer combination of elements of G.
Certainly » > k because G = Hy. Let x € H,. By the Claim, there is
a nonzero element y € G with z > y. The hyotheses (ii) on H guarantees
that © —y € H. Because |z — y| < r, minimality of r entails that x — y
can be written as a non-negative integer combination of elements of G. Since
r = (x—y)+yand y € G, it follows that we can also write = as a non-negative
integer combination of elements of G, which contradicts the definition of r.

We now prove Lemma 3.1, which states that if a list assignment v is al-
most consistent for B, then there is a large subset B’ C B for which v is
integer consistent. In the proof we work in two spaces: “membership space”
and “list space” as shown in Figures 1 and 2. The list space has higher di-
mension than the membership space. A vector in the list space designates the
number of lists of each type, whereas a vector in the membership space des-
ignates the number of memberships of each type. Consistency is a condition
on vectors in the membership space (representing aggregate memberships).
It is convenient to work in the list space because removing an agent from
the set B corresponds to removing a list of memberships, not an individual
membership.

Proof of Lemma 3.1 First, Cons* C Zﬁ\r/l is closed under addition and
relative subtraction; let G; be a finite set of generators. Recall the notation

Lists,, = {¢ € Lists : |{| < M}

We view Lists); as the unit vectors in RListsu , and define a linear map

T : IRLiStSM — RM by T'(6¢) = £ for each unit vector §,. Set

J ={x € ZEiStSM : T(z) € Cons"}
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The set J describes consistency in RLIStSy 1 i easily checked that J
is closed under addition and relative subtraction; let Go be a finite set of

generators.

Define constants K, Ky by:

K, = 2 1 ! 1)
v = 2 (maxlgl +1) (maxl| +
Ky = Kj|M|M*

Note that K, Ks depend only on Q2] < | M|, on the number of club types,
and on the bound M on the number of memberships that may be chosen by
an individual.

The proof now proceeds through several intermediate constructions and
estimations. Write
s =vg € RM

and )
t = Z Oy, € ]RLIStSM

beB
The vector s represents the memberships assigned by v to B, and t represents
the lists assigned by v to B. We will find z € J such that z < ¢t and estimate
|t — z|. The vector z also represents a set of lists, and ¢ — z represents the
lists that are removed from ¢ by removing members of B. We shall define B’
such that |B\ B'| = |t — z| and

Z O, =26€J

beB’

The definition of 7 and the definition and linearity of the mapping 7" entail
that
Vg = Z T(by,,)=T (Z 5%) € Cons”
beB’ beB’
In order to construct z and estimate |z —t|, we first estimate dist (s, Cons™).
We then construct an x € Cons™ for which we can estimate |x — s|; this
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estimation is made easier by arranging that x < s. From this x we construct
ay € J, and estimate |y — t|. Using y we construct the desired z € J with
z < 't, and estimate |z — t|. See Figures 1 and 2.

Step 1 We estimate dist (s, Cons®). To this end, choose an element v €
Cons such that
|s — v| = dist (s, Cons)

Note that v > 0, for otherwise the positive part v+ belongs to Cons (by
the definition) and is closer to s (which is positive) than is v. By definition,
for each club type (m,) there is a real number «(7, ) such that for every
w € Q,

v(w,m,7) = afm,y)m(w)
Since v > 0 and ®# > 0, we have a(m,y) > 0 for each (m,7). For each

(m,7) let &(m,~y) be the greatest integer less than or equal to a(m, ) and let
w € Lists); be defined by

wlw, m,7) = a(m, )7 (w)
for each club (7,~). This construction guarantees that w € Cons* and that
0 <ov(w,m7vy)—ww,my) <rlw) < M*
for each membership (w,7,7), so
w —v| < |M|M*
Hence
dist (s, Cons™) < |s — w| < |M|M* + dist (s, Cons) (1)

Step 2 We construct an element z € Cons™ that is dominated by s. If
w < s, take z = w. If w K&s, there is a membership m € M such that
w(m) > s(m). Use Lemma 6.1 to write



Pick y* € G; such that n,(y*) > 0 and y*(m) > 0; set

' = (") = 1" + 3 muly)y € Cons

so that ' < w and z'(m) < w(m). Continuing in this way we construct a
decreasing sequence x' > z? ... of elements of Cons*. After at most |s — w|
iterations, we obtain a vector x € Cons® with x < s. Since we subtract an
element of G; at each iteration, we conclude that

< - 2
jw—al < |max|gl| |s — ul e

Step 3 By definition, s = vp and v, € Lists), for each b. We construct a
function n : B — Lists,; such that 1, < v, for each b € B and

Z%ZI

beB
To accomplish this, write
B={by,...,b,}
Proceed inductively:
m, = min{y,,z}
U min{’/bm T — 77b1}

m, = X — Z Mb;

1<i<n-1
Step 4 Set

yzzénb

beB
The definition of T implies that T(y) = x so y € J. Write
B"={be B:n=uw}
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Because 0 < m, < v, for each b € B and v, — 1, € Zf‘, it follows that

2

= 0 if beB”
vy —m| > 1

if beB\B"

Note that |6,, — 0,,| = 2 whenever v, ~n,. Hence, since t = > e 0y,
ly —t] =2|B\ B’|.

Moreover

[s—al=> lw—ml= > [wm—ml=I[B\B

beB beB\B"

(4)

Step 5 Proceeding exactly as in Step 2 we construct an element z € J such

that z <t and
—qyl < 1t —
[z —yl < (gle%g!g \) [t =yl

Step 6 For each ¢/ € Lists,,, write

Bg:{bGBZVbZK}

(5)

By construction, z < t so z(¢) < t({) = |By| for each . Hence we may choose

subsets B; C By such that |Bj| = z({). Setting
B =JB,
]
therefore yields a subset B’ C B such that

Zéyb:zéj

bep’

As noted at the beginning of the proof, linearity of T implies

vp = »_ T(6,,) =T(z) € Cons*

beB’
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Our construction implies that
[B\B'|= > |B\Bjl= > [tO)—=0O=]t—=2 (6)
EELiStS]V[ éeLiStSM

Combining (1) — (6), expanding, and substituting the definitions of K, K>
yields the required estimate for |B \ B'|. B

Proof of lemma 3.2(a): Let 7,7, and G, be as defined in the proof of
Lemma 3.1, and let

K3 =max {|g| : g€ Go}. (7)
Now, let 1 : B — R™ be an integer consistent assignment for B. Hence

> b, €J C RLIStSm A Go generates J there exists non-negative inte-

acB

gers {n(y) : y € Go} such that Y- 6,, = > n(y)y. Now we disaggregate B in
a€B

y€Ga

groups BY(y), where y € Gy and j = 1, -+, n(y), such that for each B’(y) we

have Y 6, =y. Formally, for each ¢ € Lists,; let By = {a € B|u, = (}.
a€Bi(y)

Hence we obtain |B,| = (X 6,.)e = X n(y)ye. Thus there exists a par-
acB y€G2

tion {BJ(y) : j = 1,..n(y) and y € G} of B, such'that ‘Bg(y)‘ =y, for
,-..,n(y). Now define B'(y) = Usepists,, B7(y). Then we obtain

all j =
n(y)
> by, =yforallyeGoand j=1,...,n(y)and U U B'(y) = B.
a€BI(y) y€Ga j=1

Since y € G C J, we obtain that p is integer consistent for all groups
BI(y) and |B/(y)| = |y| < Ks. Letting I = {(y,7) : j = L,..n(y),y € Go}
yields the conclusion.

Proof of lemma 3.2(b) From Part (a) we know that B can be partioned
into B = |J B’ such that yu is integer consistent for B* and |B’| < K3. For
icl
each a € B; we now choose i, € I such that a € B's. Define B, = |J B's.
a€ By

Since p is integer consistent for B%, each a € By, then  is integer consistent
for By. Moreover, since |B%| < K3 we obtain |By| < K3 |B;|. B

The following Lemma appears in EGSZ (1999), but we include it here for

convenience. This lemma allows us to construct upper and lower bounds for
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list prices, is used in the proof of Theorem 5.3. By analogy with a notion
from cooperative game theory, we say that a subset L C Lists,, is strictly
balanced if there are strictly positive real numbers {e,(¢) : ¢ € L} (called
balancing weights) such that 3, €, (£)¢ € Cons.

Lemma 6.2 There is a constant R* > 0 such that: If L C Listsy is a
strictly balanced collection and q € Trans is a pure transfer then

maxq-f{ > —R"ming-/{
el =

Proof: For each strictly balanced collection of lists L, fix balancing weights
GL(). Set

R* =inf{e.(¢) : L is a strictly balanced collection , ¢ € L}

By definition, balancing weights are strictly positive. Because the set of
strictly balanced collection of lists is finite, it follows that R* > 0.

To see that R* has the desired property, fix a strictly balanced collection
L with associated balancing weights €/, (-). Observe that

der(l)g-t=q-> e (€)=0

LeL leL

Set Ly ={feL:q-£>0}and L_ =L\ L. Collect L terms on the left
hand side and L_ terms on the righthand side to obtain:

> allg-t=— Y el ®)

el q€L_

Because the coefficients €, (¢) are positive and sum to 1, we have:

maxq-{ = [ZEL(E)] maxq - (>

LeL el

> eL(f)] maxq-£> Y e (l)g- L

el el el

(9)
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Because ¢ - ¢ < 0 for each ¢ € L_, we have:

_qezL: er(f)g- £z —mine, () ming-£ > —mine,(()ming-£ (10)

Combining (8), (9) and (10) and recalling the definition of R* yields the
desired inequality. Il

Proof of Theorem 4.3: Let f* = (2%, u*) € C.(E).

Step 1 For each agent a € A consider the preferred sets
pla) = {(z,0) € Xa : ua(2,0) > ua(xy, 1) }
and the corresponding net prefered set
Y(a) ={(z,0) e RN x RM: (2 +e, — 7(£),£) € p(a)}.
Moreover let ¥(a) = 1(a) U {0} for all a € A and let

Z=3 U(a) (11)

acA
Step 2 Let Ky = Ki(N + |[M|)M + Ky + N + | M|, where K, K, are the

constants defined in Lemma 3.1. Define

C* = {(z,n) € RN x RM : 24+ (WK, +¢|A|) 1 << —WKdist (1, Cons) 1}

Note that C* is a convex cone with origin (—(W K, +¢|A|)1,0) and that
0 € Z. We want to separate Z from C*; to accomplish this, we must show
that C* Nconv Z = (). We suppose not and construct a coalition that can
e-capitablock.

Assume (z, ) € C* Nconv Z. Hence, by the Shapley-Folkman theorem,
we can choose elements (2, 11q) € conv ¥(a) for each a € A such that:

(1) (27 :U’) = ZaGA(Zaa ,U/a)
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(i) |{a € A: (2, pa) ¢ ()} <N +|M]|

Write

A'={ae€ A: (24, 1ta) € ¥(a)}, D={a€cA:(z4ta) ¢ Y(a)}

Agents a € D get bundles in the convex hull of ¥(a); hence u, €
convListsy,;. Thus, since there are at most N + | M| such agents, it follows
that:

dist (par , Cons) < (N + |[M])M + dist (ua, Cons)

We can therefore use Lemma 3.1 to choose a subset A” C A’ such that
par € Cons™

and
A"\ A"| < Ki((N + | M|)M + dist (ua, Cons)) + Ko

Thus

|A\ A"] < K1((N + |[M|)M + dist (4, Cons)) + Ko + N + M| (12)

Now define the coalition
B={a€ A" (25 a) # (0,0) }.

We assert that B # () and that B can e-capitablock. First notice ug =
par € Cons™. Moreover, uy(2zy + €, — T(1p), o) > up(xy, pg) for all b € B,
since (2p, tty) € ().

We shall now show that that zp << —¢|A|, which yields that B A, and
that B can e-capitablock. Since (2, pt) = Y qca(2a, tta) € C*,

D zg << [-(WEKy + €] A]) — WK dist (4, Cons))|1 (13)

acA
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For each a € A, z, > —e, > —W1, which together with (12) yield

> za > —(Ki((N + [M|)M + dist (ua, Cons)) + Ky + N + |M|) W1,
ac A\ A"

Hence we obtain by (13), using that Ky = Ki(N 4+ |M|)M + Ky + N + M|,

zB:Zzb: Z za:Zza— Z z, << —¢g| A1,

beB acA"” acA acA\A"

as required. We conclude that C* Nconv Z = (), as claimed.

Step 3 We now use the separation theorem to find prices (p, ¢*) € R x RM,
(p,q*) # (0,0) and a real number o such that

<o for each (z,u) € C*

>0 for each (z,u) € Z

Because 0 € Z we have o < 0.Since C* contains a translate of —RY, x {0},
it follows that that p > 0. Because C* contains a translate of {0} x Cons,
it follows that ¢* vanishes on Cons and hence that ¢* € Trans. We claim
that p # 0. To see this, suppose to the contrary that p = 0. By construction,
(p,q*) # (0,0) so ¢* # 0. Hence there is a i € R™ such that ¢* - 7 > 0.
For 6 > 0 sufficiently small, ((—(W K4 +¢|A|)1,0) + (—1,6f)) € C*, so that
(p,q*) - ((—(WK4+¢|A|) — 1)1,6i) < o < 0. However

(p.q") - (=(WKy +e|A]) = 1)1,6p) =

(0,4") - (~(WKy + | A]) — 1)1,67) = 8¢" - i

which, by our choice of [, is positive. This is a contradiction, so we conclude
that p # 0, as asserted.

Normalize p such that p € A. Given (p,q*) and the state (z*, u*), define
membership prices ¢ by

* 1 .
Gm = @, + P inp(m,~)
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for each m = (w,m,7) € M. Remark that for an arbitrary (y,¢) € R x
LiStS]y[

(p,q) - (y,0) = (p,q") - (y+7(£),0).

Step 4: Let K = WK, and let ¢ = % + . We now show that (z*, u*)
can be ¢-decentralized using the prices (p,q). Clearly, each club type has
balanced budget at the prices (p, ¢*) since ¢* € Trans. Moreover, notice,
that since ((—(W K, +¢|A|)1,0) belongs to the closure of C*, it follows that

02 (p,q") - (=(WKy+¢e[A])1,0) = (WK, + ] A]). (14)
Now let
Ey={ac Al (pq)- (2}, 1) >p-ea}
and Fy = A\ E;. Because (z*, u*) is feasible for A and ¢* € Trans,
(P, q) - (@, pa) =p- (@4 +7(p2) =p-ea
Since A = E; U Ey and E; N Ey = (), it follows that

(0,q) - (¥, 1) —P-em = —((p,q) - (Thy, Hiy) —D-€m,)  (15)

The net trade (xf + 7(uk) — eq, 1) is in the closure of ¥(a) for each a. Using
the separation property of prices and (14) we obtain:

(P, q) - (@, 1) =P~ ey | 2 —(W Ky + ] Al) (16)

Using (15) and (16) and keeping in mind that expenditure minus income is
positive for agents in E; and no others yields:

o (f*,p,q) = ﬁ;pi(f*,p,@
- ﬁ S [(pra) - (i) — p- e

1 * *
= _W[(pa Q) ' (xE27ILLE2) — P €Ry ]

< WK4+M _£+€_¢
oAl AL A
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This establishes the budget estimate for the ¢-decentralization.

To estimate p?, let E3 be the set of agents for whom there is (y,,v,) €
B(a, p,q) such that u,(ya,va) > us(x, ). As before, separation implies

(P,q) - [(yms, vEs) — (€ps, 0)] = —(W Ky + ] A])
Rearranging yields

1 WK, eld K
_(p7q ' €3>0 — \YE3, UEs S +_:_+5:¢

This establishes the second estimate for the ¢-decentralization.ll

Proof of Theorem 5.3

L
w

economy EF by adjoining to the agent set A a single agent of each external

Step 1 For each positive integer k£ greater than = construct a perturbed

characteristic w € ). That is, the set of agents in the perturbed economy is:
A=AU{a,: weN}

External characteristics, choice sets, endowments and utility functions for
agents in A are as in the original economy £. For the added agent a,, define
external characteristics, choice sets, endowments and utility functions by:

Wa, = W
X,., = RY x{f€Listsy : (', 7,7) =0if ' # w}
o, = %1

U, (2,0) = |z]

Notice, that the endowments of the added agents depend on k. However
to avoid notation we do not explicitly refere to k in the notation e,_.

Step 2 The demand functions of the added agents are such that, for com-
modity prices near the boundary of the simplex and for membership prices
that are large in absolute value, aggregate excess demand for commodities
will be impossibly large. As a consequence, we can write down compact price
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sets that contain an equilibrium price for the convexification of the economy
Ek. Choose a real number €* > 0 so small that

[1 — (N - 1)5’1 l kﬁlk

= WAl +19))| — (N = 1))W(|A] +1€) > 0.
Define a price simplex for private goods

A ={peRY: > pn=1and p, > ¥ for each n}.
neN

Rk

Having chosen €, choose a real number R* > 0 so big that |7(¢)| < 7=

for all ¢ € Lists;; and
Rk
2N M+

[1-c5 (N —1)] l — WA+ Q)| — "N = DW (A +]9]) > 0.

Define a bounded set for club transfer prices:

Qpr = {q € Trans : |g,| < R* for all m € M}.

Step 3 We now define the excess demand correspondence for the economy
EF. Let p € A, q € Qpr. For each agent a € A, write

Bla,p,q) ={(z,0) e Xy :p-x+q-L+p-T(l) <p-eq}.

This is agent a’s budget set, assuming that he must pay an equal share of
the inputs to club activities. Since we have assumed that 0 € X, we obtain
B(a,p,q) # 0. Moreover, B(a, p, q) is compact.

Now let

d(a,p,q) = argmax{uy(x,?): (x,¢) € Bla,p,q)} and
((a,p,q) = {(z+7(0),€) = (€,0) : (2,£) € d(a,p,q)}

be agent a’s demand set and excess demand set. Excess demand sets are
uniformly bounded because endowments are bounded, private good prices are
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bounded away from 0 and club transfer prices are bounded above and below.
Since endowments are assumed to be desirable, it is easily checked that the
correspondence (p, q) — ((a, p, q) is upper hemi-continuous for each a. Define
the aggregate excess demand correspondence Z : Ak X Qpr — RN x RM as

Z(p,q) = ¢(a,p.q).

acA

The correspondence Z is upper hemi-continuous and has compact and
non-empty values.

Step 4 We now find a fixed point of the convexified excess demand corre-
spondence. Individual income comes from selling endowments and (perhaps)
receiving subsidies for club memberships. The value of each individual’s en-
dowment is bounded by W Because club transfer prices lie in the interval
[~ R*, +R*] and individuals can choose no more than M club memberships,
subsidies for club memberships are bounded by M RF. Because private good
prices are bounded below by ¥, individual demand for each private good
is bounded above by Eik(W + RFM), and individual excess demand for each
private good lie between —W and Eik(W + RFM). Hence aggregate excess
demand for private goods lies in the compact, convex set

1
ZF={zeR": -W(|A|+|9Q]) < 2, < g(W—I—RkM)(]A\ +192|) for each n}
and aggregate demands for club memberships lie in the compact, convex set

C={peRM:0< 3 alm) < M(|Al+|Q)}
meM

Now, define the correspondence
DAL XQre X ZFxC — A X Qe x ZF x C
by
®(p,q, 2 1) = largmax{(p, ¢') - (z, 1) : (', ¢) € Dcr X Qpr}] X conv Z(p, q)
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It is easily checked that ¢ is an upper hemi-continuous correspondence, and
that its values are non-empty convex sets. Hence Kakutani’s fixed point
theorem guarantees that ® has a fixed point. Thus there is a price pair
(p*,¢*) € A x Qpr and a pair (2%, u*) € conv Z*(p*, ¢*) such that

(", ¢") - (2, 1F) = max{(p', ¢) - (", ") = (W, d) € Ak X Qpr}.
Walras’ Law implies (p*, ¢*) - (2%, u*)=0

Step 5 We show in several steps that z¥ = 0 and u* € Cons.

Step 5.1 We show first that ¢* - u* = 0. Suppose that this is not so; we
obtain a contradiction by looking at excess demands at prices (p”, ¢*) of the
added agents in A\ A. Because 0 - u* = 0 maximality and the definition of
® entail that ¢* - ¥ > 0. Moreover maximality entails that ¢* € bdy Qg
so that |¢%| = R* for some m € M. If ¢°, = R*, then since ¢* € Trans,
some other price must have large magnitude and be negative. Thus there is
always a membership m* = (w*, 7*,v*) such that ¢¥. < —RF/M*. The agent
ay- € A\ A could obtain a subsidy of R¥/M* by choosing one membership
m* and no other. Remember R* has been chosen such that |7(¢)| < % for
% for paying
for the inputs. Since he does not care about club memberships and finds all

each ¢ € Lists,;. Hence, this agent at most uses the wealth

private goods to be perfect substitutes, it follows that his excess demand for

one of the least expensive private goods -which we may as well suppose to
be good 1- is at least % — % > _2]\1[?]’\“4*

for private commodities is convex. Keeping in mind that the convexified

— W. Moreover his excess demand

individual excess demand for all agents are bounded below by —W1, that
the total number of agents in A is |Q|+]A|, and that (z*, u*) € conv Z (p*, ¢*)
we obtain:

k Rk
> —
4 2 grmm - WA+ 19)
2> WAl +9)) if n>1
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Define p € A« by:
pro= 1—ef(N-1)
ﬁn = £ ifn>1
Calculation shows that
Rk

= W(A]+ 9] | — SV — YW (4] +[2))

bk > [1—5’“(1\7—1)}[

Our choices of R¥, e guarantee that the left hand side of the inequality is
strictly positive so

(,0) - (=", 1") > 0= (0", ¢") - (=¥, ")
which contradicts maximality. We conclude that ¢* - u¥ = 0, as desired.

Step 5.2 u* € Cons. If not, we could find a pure transfer ¢ € Trans
such that ¢ - u* > 0 and hence could find a ¢ € Qg such that ¢’ - uF > 0,
contradicting maximality.

Step 5.3 pt > &* for each n. Suppose not; we once again obtain a contradic-
tion by considering the excess demand of the added agents in A\ A. No such
agent cares about club memberships and finds all commodities to be perfect
substitutes. Since these agents have endowment %1 they have at least the
wealth % for buying private commodities for consumption. Since they only
consume the least expensive commodities, then for all u € > ,e 1y 4 ¢(a, p*, ¢%),
there is at least one commodity h, for which

ST e

EENS T Tk T ENG
Summing over all agents and keeping in mind that individual excess demands

- wiQ (17)

are bounded below by —W1 , we conclude that for some commodity, say,
commodity 1,

]
4> w440
> WAl +19)) ifn>1
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Define p € A« by:

]31 = 1- &Tk(N — 1)

Pn = € if n > 1
Calculation gives

]

v~ WA+ Q)| =5 (N = )W (|A] + Q)

p-2t > [1—ef(V —1)] l

Our choice of €* guarantees that the right hand side of the inequality is
positive and hence that

(B, 0) - (%, %) > 0= (9", ¢") - (2%, ")
which again contradicts maximality. We conclude that pt > &* for each n.

Step 5.4 We show that 2* = 0. Notice that (p*,q¢*) - (2%, %) = 0 and
q* - ¥ = 0so p* - 2¥ = 0. Hence, if 2* # 0 there are indices i, j such that

2 < 0 and z]’“ > 0. Since pf > ¥, we can construct a price p € A.x by
setting

pi = pf—5(pf —€)

P = P+ 5f - )

ﬁn = pfi n 7é i, ]

Since p* - 2F = 0, it follows that p- z¥ > 0, a contradiction to maximality. We
conclude that ¥ = 0.

Step 6 In this step we find a subset B* of A and a feasible state (y*, v¥),c1 such
that |A\B*| < S, where S is defined in (21). All agents a € B* are in their
demand sets. Moreover, the agents in A\ B* are not assigned to clubs, and
they satisfy their budget constraint in aggregate.

As (2%, u*) = (0, pu¥) € convZ(pF, ¢*), we can apply the Shapley-Folkman
theorem to obtain (2*, u¥) € conv((a, p*, ¢*) for a € A and a set D* C A with
|D¥| < N + |[M| such that S, 4(2¥, 1¥) = (0, 4*) and all agents a € A\ D*
are optimizing: Hence for a € A\ D* there exists (2, u*) € d(a, p*, ¢*) such
that zF = 2% + 7(uF) — e,. Thus
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® > ek (257 /J'];) + ZaeA\Dk (m]a€ + T(/J’l;) — €q, :U'l;) = (07 /J’k)
o (zF 1F) € argmax{u,(z, ) : (x,£) € B(a,p*, ")} for a € A \ D¥;
o (2}, pg) € conv((a,p*,¢*) for a € D;

o |[D* <N+ M|

Let B*¥ = A\ D* and note that
B > [A] = (N + [M]). (18)

Moreover
|A\Bk| <N+ M|+ Q] < M(N +2|M|)

and by Step 5
,u]ﬁ; = u* € Cons.

Hence, as u* € convListsy, for all a € A\ B* we obtain,

dist (pk, Cons) < dist (ph, p¥) < M(N + 2| M) (19)

Now we apply Lemma 3.1 to find a subset B¥ C B* such that
H%k € Cons”

and
|B"\ B¥| < K; dist (', Cons) + K> (20)

where K7, K, are the constants defined in Lemma 3.1. Combining (18), (19)
and (20), and letting

S=N+ M|+ Ki(M(N +2|M|)) + K, (21)
we have

|B¥| > |A| - S
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We can define the state (y*,v*) for EF.

(yk I/k) — (‘/EI;’:U’];) if ac Bik
ara (2% +e,,0) if ac A\ B*

The state (y*, %) is feasible for A since 1% = ¥, € Cons* and Y, a(y¥ +
P(v8) ~ ) = Tue e (2 + 7 (1) — )+ Saem (2 4ea—€0) = e 25 = 0.
However, the state is not necessarily feasible for A, since the aggregate net
trade in private goods of the artificial agents might not be zero. Also, the
agents in A\ B¥ are not necessarily in their budget sets as ¢* - u¥ might not
be zero for such agents. However, since pi%,, u% € Cons and ¢* € Trans,
it follows that ¢~ - ,u’j;\Bk = 0. Hence, as (2%, u¥) € conv((a,p*, ¢*), and
therefore p* - 28 + ¢¥ - ¥ =0, for all a € A\ B*, we obtain that

("6 - (Y Wh—ea0)=p" > zg=—¢"- > pi=0

acA\BF acA\B* acA\ Bk
Hence, in aggregate the agents in A\ B* satisfy the budget constraint.

Step 7 By construction, club transfer prices ¢* are bounded by R, but R*
depends on k. We now replace the sequence of club transfer prices (¢*) by a
bounded sequence (¢*) which leads to the same demands.

Passing to a subsequence if necessary, we may assume without loss that
for each ¢ € Lists); the sequence (¢" - £) converges to a limit Gy, which may
be finite or infinite. Write:

L = {{elListsy:¢"-{— G, e R}
L, = {¢€Listsy :q¢" £ — +00}
L = {{€lListsy :q¢" { — — o0}

Choose G € R so large that |¢F - /| < G for each k, each £ € L.

Define the linear transformation 7" : Trans — R by T'(q), = q-£. Write
ran T = T(Trans) C RY for the range of T and ker T = T1(0) C Trans
for the kernel (null space) of T'. The fundamental theorem of linear algebra
implies that we can choose a subspace H C Trans so that H NkerT' = {0}
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and H + kerT' = Trans. Write T}y for the restriction of 7' to H. Note
that Ty : H — ran T is a one-to-one and onto linear transformation, so
it has an inverse S : ran T' — H. Because S is a linear transformation, it
is continuous, so there is a constant K such that |S(z)| < K|z| for each
reranT.

Let R* be the constant constructed in Lemma 6.2. Choose kj so large
that k > ky implies

¢t > F2KGM +W if ¢ € L,
¢ < —QKG*M—% if (€ L_

Write ST for the composition of S with T'. For each k > kg set
g = ST(¢*) — ST(¢"™) + ¢* € Trans
Because S, 1|y are inverses, the composition 7'S' is the identity, so

T(7") = TST(¢") — TST(¢*) + T(q*) = T(¢")

We assert that for k > ko, v¥ ¢ L_ U L, for any a € A. This holds for
a € A\ B* because ¥ = 0. If a € B* then ¢* - ¥ < W (because the value
of endowment is bounded by W) so v/¥ ¢ L., by construction of L. Since
{v¥} are strictly balanced and ¢* € Trans, it follows from Lemma 6.2 that
mingepe{q" - vE} > —7 max,epe{¢” - vE}> —%, and hence v} ¢ L_ by the
construction of L_.

We now chose k; > kg such that for all / € L_ and all £k > k; we have
@0 < g™ 0 —2KGM. We claim that when k& > ki then (y* v¥) is a
maximal element in B(a, p*, g%) for each agent a € B*. To check this, keep
in mind that individual demands for private goods and club memberships can
be thought of as depending only on the prices of private goods and of lists,
not directly on the prices of memberships. We showed above that v* € L for
a € A; by construction ¢* - £ = ¢F - £ for all £ € L because T(q%) = T(q").
Hence choices are budget feasible. Suppose now that (y, £) is budget feasible
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for a € B* at prices (p¥, ") and preferred to (y*,v*). Budget feasibility of
(y,¢) at prices (p*, ¢*) implies that ¢*-¢ < W and hence ¢*°-¢ < W +2KGM
because |ST(¢*)| < KG and |ST(¢*)| < KG. Thus £ ¢ L. For £ € L_ and
k > ki, we similarly obtain ¢*-¢ > ¢" -¢{—2KGM > ¢*¢. Thus, ¢"-¢ > ¢*-¢ for
¢ € L_. Hence ¢*-£ > ¢~ - for £ € L_UL. Thus budget feasibility of (y, £) at
prices (p*, ¢*) implies budget feasibility of (y,¢) at prices (p*, ¢*), so (v, v*)
is not optimal at prices (p¥, ¢*). It follows that (y*, v*) are optimal choices at
prices (p*, %) for all agents in B*. By construction, |g*-¢| < 2KGM +|q* - /|
for k > ko and for all lists /. Because singleton memberships are themselves
lists, it follows that (¢*) is a bounded sequence in Trans.

Step 8 We thus have a bounded sequence (p*,¢*). Clearly, also the se-
quence (y*) is bounded since the sequence is non-negative and 0 < 3,z y* <
W (JA|+|2]). Moreover /¥ € Lists), for all a. Passing to subsequences as nec-
essary, we may assume that B* is constant, say B*, and that v* is constant,
say v*, along the subsequence, and that p*¥ — p* € A, ¢ — ¢* € Trans,

(") — v
In order to define a feasible state for £ first notice that we can without

loss of generality assume that A\ B* # () (compare Step 6). We now define
the state (g*, 7*) by

(yz,v2) if acB*

(?7;’5;) = *-eq * . %
( mzadw*y@ ,0) if a€ A\ B

We shall show that (*, 7*) and the prices (p*, q) are an S-quasi-equilibrium
for £, where S is defined in (21), and where ¢ are the membership prices
corresponding to the club transfer prices ¢*, i.e., q(w,m,v) = ¢"(w,m,v)+

p- Linp(r,7).

Our construction and the fact that limp_o Y. e, = limg o %|Q| =0
acA\A
yield that (y*,7*) is feasible for A. Clearly, (%, 7)) € B(a,p*,q*) for a € B*.
Moreover, as noticed in Step 6, we have p*- > ¢*=pF. S e, for every
acA\B* acA\Bk
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k and hence

*

* * p 'ea * *
(p,Q)'(*.—Ze S oyal,0)=p*eq
p ac A\ B* 4 acA\B*

for a € A\ B*. Hence all agents are in their budget sets at prices (p*, ¢*).
We complete the proof by showing that for all a € B*, if u,(y, ) > u,(y, v})
then (p*,q*) - (y + 7(£),£) > p* - e,. However, this follows since, if (p*, ¢*) -
(y + 7(0),£) < p* - eq, then (pF, ") - (y + 7(¢), ) < p* - e, for k sufficiently
large, which contradicts that (z%, u*) € d(a,p*,"). Let D = A\ B*. Then
since |D| = |A\ B*| < S, we have shown that the state (y*, 7*) and the prices
(p*, q) are an S-quasi-equilibrium. W

Proof of Theorem 5.4: Let S be a non-negative integer, ¢ > 0, and let
K = WK5 where Kj is the constant in Lemma 3.2. Let ((, i), (p, q)) be an
S-quasi-equilibrium for an economy &€ with |A| > %: %‘”’S Assume that
B C A can e-capitablock. Then there exists (y,v) such that ug(ya, ve) >
Uq (g, he) for every a € B, v is integer consistent for B and yp + 7(vp) <
ep—|A|el. Since ((z, p), (p, q)) is an S-quasi-equilibrium, there exists D C A
with |D| < S such that if a € B\ D then (p,q) - (Ya,va) > p - €q. Apply
Lemma 3.2(b) to v, to B and to B; = BN D C B to obtain B, such that
By C By, |Bs| < K3|By| < K35, and v is integer consistent for By. Clearly
v is also integer consistent for C' = B\ B,. Hence, by budget balance for
club types we have ¢ - ve = p-7(ve) and ¢ - vg, = p- 7(vp,). Thus, as
(,q) - (YayVa) > p - €, for agents in C' and agents in By are in their budget
sets, we obtain p-yc+p-7(vc) = (p,q) (yo,vc) > p-ec and p-yp, +p-7(vp,)
= (p,q) - (YBy, VB,) > 0. Thus for B = By U C we obtain

p-ys+p-7(ve) > p- Yo

As endowments of the agents a € By are bounded by W1 and |By| < K35
this inequality yields

p-yp+p-7(vg) > p-ep — WK3S.
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However, as B e-capitablocked and |A] > %535 we know
pys+p-7(vg) <p-egp—clAl <p-ep — WK3S..

Hence we have a contradiction. Thus (z,u) € C.(€). B
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