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Abstract

This paper defines a general equilibrium model with exchange and
club formation. Agents trade multiple private goods widely in the
market, can belong to several clubs, and care about the character-
istics of the other members of their clubs. The space of agents is
a continuum, but clubs are finite. It is shown that (i) competitive
equilibria exist, and (ii) the core coincides with the set of equilibrium
states. The central subtlety is in modeling club memberships and ex-
pressing the notion that membership choices are consistent across the
population.
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1 Introduction

Consumption is typically a social activity. The company we keep affects our
demand for private goods, and our consumption of private goods affects the
company we seek. General equilibrium theory focuses on the interactions of
consumers with the market, largely ignoring the social aspect of consumption.
Club theory focuses on the social activity of consumption, largely ignoring
the interactions of individuals with the market. This paper integrates club
theory and general equilibrium theory, building a framework in which both
markets and relationships matter.

We build here a competitive model of clubs, and thus follow a long tra-
dition initiated by Buchanan (1965). (See Cornes and Sandler (1996) and
Kurz (1997) for overviews of the literature.) Marriages, gyms, academic de-
partments, golfing foursomes, and restaurant clienteles are the sorts of clubs
we have in mind (but not large organizations like political jurisdictions in the
sense of Tiebout (1956)). In addressing competition in club economies, the
existing literature has treated economies with a finite number of agents, but
such an assumption does not lead to an entirely satisfactory model of clubs or
of competition. Club choice is intrinsically indivisible (one joins a club or one
does not); as a consequence, the core of a club economy with a finite number
of agents may well be empty. Moreover, in a finite economy individuals will
generally have market power, so there is no reason to view such economies as
perfectly competitive (even when the core is not empty). The clubs literature
for the most part has concentrated on special circumstances or approximate
notions of core and competition.! Our approach is quite different: following
Aumann (1964), we build a general equilibrium model with a continuum of
agents. In this framework, we define a decentralized notion of price-taking
equilibrium parallel to the usual notion in exchange economies, show that
(exact) equilibrium always exists, that equilibrium allocations are Pareto op-
timal and belong to the core (so that the core is always non-empty), and that
club economies pass a standard test of perfect competition, the coincidence

!See Ellickson (1973, 1979), Scotchmer and Wooders (1987), Conley and Wooders
(1995), Gilles and Scotchmer (1997) and Scotchmer (1997) for instance.



of the core with the set of equilibrium allocations.?3

Because the theory proposed here is intended as a competitive theory of
clubs, we require that clubs be small relative to society as a whole. In our
continuum framework, the expression of this requirement is that clubs are
finite; clubs are therefore comparable in size to individuals but infinitesimal
relative to society. Because our description of a club includes the number of
members in the club and their characteristics, however, it is meaningful to ask
about the size and composition of clubs that form at equilibrium. Similarly,
it is meaningful to ask about the relative numbers of clubs of different types
that form at equilibrium (although the absolute number will always be zero
or infinite).

We describe a club type by the number and the characteristics of its
members and the activity in which the club is engaged. We allow formation
of many possible types of clubs and trading of many private goods. The
latter is especially important, because agents trade with the market and not
just within clubs; if there is a single private good, there will be no trading
with the market (only transfers within clubs). We allow each agent to belong
to many clubs simultaneously.

Our model is competitive, despite the presence of externalities, because
clubs are small and external effects are encapsulated within clubs. We as-
sume that the number of external characteristics of individuals (the charac-
teristics that matter to others) and the number of potential types of club
are finite, and that the maximum number of clubs an individual can choose
is finite. These assumptions guarantee that our choice space is finite di-
mensional, greatly simplifying the model and the proofs— but they are not

2Cole and Prescott (1997) provide a continuum model in a spirit similar to the present
paper, but the objects of choice in that paper are lotteries over bundles of private goods
and club memberships. Lotteries overcome the indivisibility problem by making choices
divisible. Because we view the indivisibility as fundamental, we prefer to address it head-
on. Closer to the present work is the unpublished paper of Makowski (1978), who interprets
clubs as organizations formed by entrepreneurs.

30ur companion paper, Ellickson, Grodal, Scotchmer and Zame (1997b), treats ap-
proximate equilibrium and approximate decentralization in large finite economies.



required for competition. Useful extensions would allow an infinite number
of differentiated private goods, an infinite number of differentiated external
characteristics and an infinite number of club types, and allow agents to
choose an infinite number of club memberships— but such extensions will
require an infinite dimensional choice space, and both the model and the
proofs will necessarily be much more complicated.*

A key to our approach is that we define a club membership as an opening
in a specific type of club, available to agents with a specified characteristic,
and treat club memberships and private goods in parallel fashion as objects
of choice. As in classical general equilibrium theory, where the description of
a private good includes all the relevant aspects, so here the description of a
club membership includes all the relevant aspects: number of other members,
relevant characteristics of the other members, relevant characteristics of the
member in question, purpose of the club, resources necessary to carry out
that purpose, and institutional arrangements within the club. Just as a
small chocolate bar, a large chocolate bar, and a large chocolate bar with
almonds are different goods and may have different prices, so membership
in a swimming pool club with 20 members, a swimming pool club with 40
members and a tennis club with 40 members are different memberships and
may have different prices. Indeed, if gender matters then admission for a
female in a coeducational school is different from admission for a male in the
same school, and may be priced differently.

Despite the parallel treatment of club memberships and private goods,
there are important differences. First, and most importantly, the feasibility
condition for trading of club memberships is different from the feasibility
condition for trading of private goods. For private goods, feasibility means
that demand be equal to supply. For club memberships, feasibility means
that choices must be consistent across the population. For example, if a third
of the population are women married to men, then a third of the population
must be men married to women. This consistency condition must hold si-
multaneously for all types of clubs. Second, the prices of club memberships

4See Mas-Colell (1975) and Ostroy and Zame (1994) for competitive models of exchange
economies with infinitely many differentiated commodities.
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can be positive, negative or zero (whereas prices of private goods must be
positive). This is because club membership prices have two components: a
(non-negative) share of the resource to form the club, and a transfer to other
members of the club, which may be of any sign. These transfers internal-
ize the externalities of club membership; in equilibrium, the value placed on
these externalities will depend on tastes and on the relative supply of various
characteristics. Third, club membership is inherently indivisible, with the
consequence that consumption sets and preferred sets are not convex. Our
continuum framework handles this difference very smoothly.?

Our proofs follow lines that are typical of general equilibrium theory, but
with many subtleties. The central subtlety is in accommodating the club
consistency condition, which has no analog in the general equilibrium liter-
ature. Another subtlety arises in the proof of core equivalence, where the
separation theorem produces the decentralizing price; this price has both
private good and club membership components, and we must be sure that
the private good components are not identically zero. A third subtlety arises
in the proof of existence of equilibrium, because the nature of club member-
ship prices (which may be positive, negative or zero) means that there is no
obvious compact space of prices in which to apply a fixed point argument.

Following this Introduction, Section 2 provides motivating examples. The
formal model is described in Section 3. Section 4 discusses welfare theorems
and the core. Section 5 addresses the equivalence of the core and the set of
equilibrium states and Section 6 addresses the existence of equilibrium. The
text outlines the proofs; details are in Section 7.

2 Examples

This Section presents three examples illustrating various aspects of our frame-
work. The first example uses a simple setting similar to Buchanan (1965)

5The convexifying effect of the continuum was first noted by Aumann (1964); see Mas-
Colell (1977) for a model with indivisible private goods.



to highlight three important features of our approach: 1) clubs are infinites-
imal in comparison to society as a whole but, because size is part of the
description of a club type, it is meaningful to talk about the optimal size of a
club; 2) clubs of any particular type can be replicated with constant returns
to scale (i.e., to form two clubs of a particular type requires just twice as
many individuals and twice the inputs of commodities as to form a single
club); 3) congestion or a finite bound on club size is crucial: without such
assumptions, equilibrium may fail to exist.

Example 2.1 Crowding Consider an economy with a continuum of con-
sumers uniformly distributed on [0,10]. There is a single private good; the
endowment of consumer k is e, = k. In addition to the private good, con-
sumers have the option of constructing and using a swimming pool, either
alone or in a club. Building a pool requires 6 units of the private good. A
consumer who consumes z units of the private good derives utility u(x;0) = x
if using no pool and wu(z;n) = 4z/n if belonging to a swimming pool club
with n members. No one belongs to more than one club.

Normalize the price of the private good to 1, so consumer k has wealth
k. Because only the size of clubs (and not their composition) matters to
consumers, pool costs will be shared equally within each club, so the price of
a membership in a club of size n is an equal share of the cost of production:
dn = 6/n. Choosing no pool will yield consumer k the utility k; sharing a
pool in a club with n members will yield utility

n n

u(k — qu;n) = 4 (k:—§>

In equilibrium, consumers stratify by wealth: the wealthiest consumers, those
with wealth in (9, 10], have a pool of their own; consumers with wealth in
(6,9] share a pool with one other consumer; the poorest consumers, with
wealth in [0, 6], consume the private good but do not enjoy the use of a pool.
Clubs of size greater than 2 do not form in equilibrium.

Note how aversion to crowding provides an effective limit on club size;
in the absence of any aversion to crowding, larger and larger clubs might be



desirable and equilibrium might not exist. Suppose, for instance, that the
utility derived from membership in a club of size n were u(z;n) = 4z (rather
than u(z;n) = 42 /n) and clubs could be of any size. Swimming pools would
then be pure public goods, no equilibrium would exist, and a competitive
theory of their provision would be inappropriate. &

Our second example illustrates the importance of viewing and pricing
club memberships for individuals with different characteristics as different
commodities. The example is motivated by Arrow’s (1972) commentary on
Becker’s (1957) discussion of market prices and segregation. The example
affirms Arrow’s insight that, in the absence of price discrimination, profit
maximization leads to segregation, but it suggests another possibility as well:
integration with price discrimination.

Example 2.2 Segregation Consider an economy with a continuum of con-
sumers uniformly distributed on [0,1]. Consumers in [0,.3) are blue, con-
sumers in [.3, 1] are green. There is a single private good; each consumer has
endowment 2. In addition to the private good, consumers have the option
of constructing and using a duplex apartment. Building a duplex requires 2
units of the private good. An individual who consumes z units of the private
good and no housing derives utility

up(;0) = ug(r;0) ==

while an individual who consumes z units of the private good and a duplex
apartment derives utility according to his own characteristic and that of the
occupant of the other half of the duplex:

up(z; BB) = 4z up(z; BG) = 6x
ua(z; GG) = 6z ug(z; BG) = 4x

using the obvious notation. (We omit some profiles because a consumer of
type B cannot occupy a GG duplex, and so forth.)

Write g, (BB), q.(BG), q.,(GG) for the prices paid by a consumer of type
w = B, G for the various kinds of housing. At equilibrium, housing prices
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for each type of duplex must sum to the production cost of 2; in particular
g(BB) = qa(GG) = 1. At these prices, blue consumers can obtain utility
2 by choosing no housing, utility 4 by choosing a segregated duplex, and
utility 6(2 — ¢gg(BG)) by choosing an integrated duplex. Green consumers
can obtain utility 2 by choosing no housing, utility 6 by choosing a segregated
duplex, and utility 4(2 — g¢(BG)) by choosing an integrated duplex. If any
integrated housing is chosen at equilibrium, optimization by blue consumers
entails that 6(2 — gg(BG)) > 4 and optimization by green consumers entails
that 4(2 — gqo(BG)) > 6. Equivalently, ¢p(BG)) < 4/3 and ¢o(BG) < 1/2.
Hence qp(BG) + qo(BG) < 11/6. This contradicts the fact that housing
prices sum to the cost of production. At the unique equilibrium, therefore,
all consumers live in segregated housing. Prices for segregated housing are
gg(BB) = qo¢(GG) = 1; prices for (undemanded) integrated housing are
indeterminate, constrained only by the requirements

4
CIB(BG) > g )

qa(BG) > =, qz(BG) + qc(BG) = 2

N =

However, segregation is not a necessary conclusion. Suppose that ug(z; BG) =
10z, with all else remaining the same. If no integrated housing is chosen at
equilibrium, optimization by blue consumers entails that 10(2—qg(BG)) < 4
and optimization by green consumers entails that 4(2 — ¢4 (BG)) < 6. These
inequalities are inconsistent with the fact that housing prices sum to the
cost of production, so we conclude some blue consumers and some green
consumers live in integrated housing. Because there are more green con-
sumers than blue consumers, some green consumers must live in segregated
housing; equating utilities for all green consumers we conclude that housing
prices are qp(BB) = qc(GG) = 1,q5(BG) = 3/2,q9c(BG) = 1/2. At these
prices, green consumers are indifferent between integrated housing and seg-
regated housing, but blue consumers strictly prefer integrated housing. At
equilibrium, 3/7 of all green consumers live in integrated housing and the
remainder live in segregated housing; blue consumers pay a premium to live
in integrated housing. &



Our third example shows why allowing for more than one private good
matters: Because agents trade with the market, there is an interaction be-
tween the demand for club memberships and the demand for private goods;
as a result, clubs can be priced out of existence. This phenomenon cannot
occur when there is only one private good.

Example 2.3 Marriage and the Market Consider an economy with a
continuum of consumers uniformly distributed on [0, 1]. Consumers in [0, 3)
are male, and consumers in [, 1] are female, where 0 < 3 < 1. There are 2
private goods; each consumer has endowment (10, 10). Utility functions are
(s means single and m means married):

up (1, 225 8) = a4 up(x1, %25 8) = T2

5}
up (21, To;m) = up(x1, x2;M) = S V1T

We solve for equilibrium as a function of 3, the proportion of males.
Consider first the case § < 1/2. Write gy, ¢r for the gender-specific marriage
prices. Because marriage is costless, gy +qr = 0 so marriage prices represent
pure transfers: one sex subsidizes the other. To solve for the equilibrium, we
hypothesize that marriage is an equilibrium outcome and work backwards to
find prices. Normalize private good prices to sum to 1, so that everyone has
wealth 10. Unmarried females (males) buy only good 2 (good 1). Married
males and females spend ¢y, qr (respectively) and divide their remaining
income between the two private goods. Assume that the “number” of married
males is m; 0 < m < (3. Because utilities within marriage are Cobb-Douglas,
market clearing for private goods yields:

10 10 — 10 —
(ﬁ—m)—+ml LI qF] — 10

P1 2m 2p

10 10 — 10 —
(1—ﬁ—m)—+ml LA QF] ~ 10

D2 2po 2po

This uniquely determines private good prices, which are independent of the
“number” of marriages: p; = (,p2 = 1 — . Suppose that some males are
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married. Because there are more females than males, some females necessar-
ily remain single. Married consumers must receive at least as much utility
as if single, and females must be indifferent between the two states (because
some females are single at equilibrium). Thus

10 5 |(10—gp)\ [10—gp
5 - 3 () ()

10 < 5 <10—QM> <1O—CIM>
g2 20 2(1-7)

Hence we can solve for marriage prices:

1 —
qF:10—81/% and gy <10—28 Tﬁ

Because gy + gr = 0 these equations entail that # > 1/5. In the range
1/5 < 8 < 1/2 we can solve uniquely for marriage prices, obtaining ¢ = 10—
8\/% ,qn = —qp. If = 1/5 the number of married males is indeterminate;
if 1/5 < 8 < 1/2 all males are married. If 0 < 5 < 1/5, the hypothesis that
some males are married leads to a contradiction, so at equilibrium there are

no marriages — but there are equilibria with no marriages.

For § > 1/2, the analysis is symmetrical, with the roles of men and
women reversed. Finally, when § = 1/2 all males and females are married,
but marriage prices are indeterminate.

We summarize the equilibrium correspondence by describing the “num-
ber” m of married males and the price qr females pay to enter marriage.
Note that m is indeterminate for # = 1/5,4/5 and ¢ is indeterminate for



0<p<1/5,=1/2and 4/5 < (< 1:

0<pB<1/5 : m=0 . qr € [+10-8,/7%5,-10+ 8, /]
g=1/5 cmel0,f , qp=+10- 8\/7
1/5<B8<1/2 : m=8 , qr =+10— W_

B=1/2 L om=_  qr € [-2,42]

1/2<B<4/5 + m=1-8 qF:—10+8\/m

B=4/5 c me0,1-08 , gp=—10+8

45<B<1 = m=0 . qr € [+10—8,/7%5,-10 + 8, /]

When the sex ratio is not extreme, the sex that is in short supply is subsidized
to enter marriage. When the sex ratio is extreme, the subsidy that would
be required is so large that the more populous sex prefers to remain single;
marriage is priced out of existence. &

For an example illustrating how easily our approach handles the possibil-
ity that individuals choose to belong to more than one club, see our working
paper Ellickson, Grodal, Scotchmer and Zame (1997a).

3 Club Economies

3.1 Private Goods

Throughout, there are N > 1 perfectly divisible, publicly traded private
goods; thus the space of private goods is RY. For z,2/ € RY, we write
x > x' to mean x; > z for each i, x > 2’ to mean that x > 2’/ but = # 2/,
and x >> 7' to mean that z; > @/ for each i. We write |z| = XN | |z,|.

3.2 Clubs

We will describe a club type by the number and characteristics of its members
and the activity in which the club is engaged.

10


mailto:bb.@

Let € be a finite set of external characteristics of potential members of
a club. An element w € () is a complete description of the characteristics
of an individual that are relevant for the other members of a club. We call
these characteristics “external” because they are the aspects of agents that
create “externalities” within clubs, and because they are observable. Such
characteristics might include sex, intelligence, appearance —even tastes and
endowments, to the extent that such characteristics can be observed.

A profile (of a club) is a function 7 : Q@ — Z, = {0,1,...} describing the
external characteristics in a club. For w € Q, 7m(w) represents the number of
members of the club having external characteristic w. For 7 a profile, write
|| = > peq m(w) for the total number of members.

There is a finite set I' of activities available to a profile of agents. (I’
is simply an abstract set.) We interpret activities as public projects in the
sense of Ellickson (1979) and Mas-Colell (1980). An activity may incorporate
a shared facility, a code of behavior or a publicly professed ideology. Agents
may rank activities differently, and an individual’s ranking may depend on
his/her consumption of private goods. Activities are not traded.

A club type is a pair ¢ = (m,7) consisting of a profile and an activity
v € I'. We take as given a finite set of possible club types Clubs = {(m,7)}.
(In particular, there is a bound on club size.) Formation of the club (m,~)
requires a total input of private goods equal to inp(m,~) € RY.

A club membership is an opening in a particular club type for an agent
of a particular external characteristic; i.e., a triple m = (w, m,~y) such that
(m,v) € Clubs and 7(w) > 1. (An agent can belong to a club only if the
description of that club type includes one or more members with his/her
external characteristics.) Write M for the set of club memberships.

Each agent may choose to belong to many clubs or to none. A list is
a function ¢ : M — {0,1,...}, where ¢(w,m, ) specifies the number of
memberships of type (w,, ). Write:

Lists = {¢: ¢ is a list }

for the set of lists. Lists is a set of functions from M to {0,1,...}, but we

11



frequently view it as a subset of R™, which is the set of functions from M
to R. We also assume throughout that there is an exogenously given upper
bound M on the number of memberships an individual may choose.

3.3 Agents

The set of agents is a nonatomic finite measure space (A, F, A). That is, A
is a set, F is a o-algebra of subsets of A and A is a non-atomic measure on

F with M(A) < occ.

A complete description of an agent a € A consists of his/her external char-
acteristics, choice set, endowment of private goods and utility function.® An
external characteristic is an element w, € 2. The choice set X, specifies the
feasible bundles of private goods and club memberships, so X, C R x Lists.
For simplicity, we assume the only restriction on private good consump-
tion is that it be non-negative, so X, = R} x Lists(a) for some subset
Lists(a) C Lists.” We assume that an individual can only belong to a
club type offering memberships with his/her external characteristic; formally,
l(w,m,v) = 0if | € Lists(a), (w,m,7) € M and w # w,. By assumption,
the number of memberships an individual may choose is bounded by M, so
(| < M for each ¢ € Lists(a). The endowment is e, € RY. The utility
function is defined over private goods consumptions and club memberships
and is thus a mapping u, : X, — R. We assume throughout that utility
functions u,(-, ¢) are continuous and strictly monotone in private goods.

3.4 Club Economies

A club economy € is a mapping a — (wq, Xq, €4, U,) for which:

e the external characteristic mapping a — w, is a measurable function

6We find it convenient to use utility functions rather than preferences.
"Thus we incorporate into consumption sets various kinds of restrictions on club mem-
berships. For instance, we may forbid some consumers to enter some club types.
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e the consumption set correspondence a — X, is a measurable corre-
spondence

e the endowment mapping a — e, is an integrable function

e the utility mapping (a, z, ) — ug(x,£) is a (jointly) measurable func-
tion (of all its arguments)®

We assume that the aggregate endowment é = [, e, d\(a) is strictly pos-
itive, so all private goods are represented in the aggregate.

3.5 States

A state of a club economy is a measurable mapping
(z,p1) : A — RN x RM

A state describes choices for each individual agent, ignoring feasibility at the
level of the individual and at the level of society. Individual feasibility means
(Zay pa) € Xa. Social feasibility entails market clearing for private goods and
consistent matching of agents.

We say that a membership vector i € R is consistent if for every club
type (m,7) € Clubs, there is a real number «(m, ) such that

w, m, ) = a(m,y)m(w)

for each w € €. (The coefficient o, ) may be interpreted as the “number”
of clubs of type (m,~) accounted for in i.) A choice function p : B — Lists
is consistent for B if the corresponding aggregate membership vector i =
5 tadX(a) € RM is consistent. (The aggregate membership vector fi counts
the “number” of memberships in each club type chosen by individuals in B

8This measurability requirement is equivalent to the usual requirement on measurability
of preferences.
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of each characteristic. Consistency is the requirement that these numbers
are in the same proportion as in the club types themselves.) Write

Cons = {i € RM : [i is consistent }

Cons is a subspace of R™. Because individuals choose non-negative num-
bers of club memberships, feasible club choices induce aggregate membership
vectors in the positive part Cons, C Cons.

The state (x, ) is feasible for the measurable subset B C A if it satisfies
the following requirements:

(i) Individual Feasibility (z,,u,) € X, for each a € B

(ii)) Material Balance

fredxa) + [ 30 inp(r) gl m) dNe) = [ e di@

(w,m 7)€M

(iii) Consistency J5 Ma dX(a) is consistent.

The state (x, u) is feasible if it is feasible for the set A itself.

A state of the economy will generally have “many” clubs of each club
type. Because members of a club care only about the external characteris-
tics of other members, and not about their identities, it is not necessary to
distinguish different clubs of the same club type.

3.6 Pareto Optimality and the Core

We distinguish “weak” and “strong” notions of Pareto optimality and the
core, and give a condition under which they coincide.

We say a feasible state (x,u) is weakly Pareto optimal if there is no
feasible state (2, 1) such that u, (2!, ta) > ta(xa, pe) for almost all a € A;
we say (z,p) is strongly Pareto optimal if there is no feasible state (2, i)

14



such that wug (2, 1)) > ue(a, pta) for almost all a € A and (2, pl,) >
Ug/ (Tar, o) for all @’ in some subset A" C A having positive measure. We say
(x,p) is in the weak core if there is no subset B C A of positive measure
and state (z/, i) that is feasible for B such that w,(x}, py) > up(zp, p) for
almost every b € B; we say (z, ) is in the strong core if there is no subset
B C A of positive measure and state (2, ') that is feasible for B such that
up(xy, py,) > up(xp, ) for every b € B and uy (z}, py,) > wy (T, p) for all
b’ in some subset B’ C B having positive measure. The strong Pareto set is
a subset of the weak Pareto set, and the strong core is a subset of the weak
core. The following assumption, adapted from Gilles and Scotchmer (1997),
guarantees that the strong and weak Pareto sets coincide and that the strong
and weak cores coincide.

We say that endowments are desirable if for every agent a and every list
¢ € Lists(a), uq(€q,0) > u,(0,¢). That is, each agent would prefer to remain
single and consume his endowment rather than to belong to any feasible set
of clubs and consume no private goods.”

Proposition 3.1 If endowments are desirable, then the weak and strong
Pareto sets coincide and the weak and strong cores coincide.

For the proof, see our working paper: Ellickson, Grodal, Scotchmer and
Zame (1997a). When endowments are desirable, we omit modifiers and refer
unambiguously to Pareto optimality and the core.

3.7 Equilibrium

Competitive prices will be (p,q) € RY x RM; p is a vector of prices for
private goods and ¢ is a vector of prices for club memberships. Because
utility functions are assumed monotone in private goods, the prices of private

9Desirability of endowments is weaker than the indispensability assumption of Mas-
Colell (1980), which in our framework would be uq(0,€) = min,. ¢)ex, va(z*, £*) for
every ( € Lists(a).
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goods will be non-negative, but prices of club memberships may be positive,
negative or zero.

A club equilibrium consists of a feasible state (z, ) and prices (p,q) €
RY x RM p # 0 such that

(1) Budget Feasibility for Individuals For almost all a € A,
(P, @) * (Ta pta) =P Ta+q " pta <P €a
(2) Optimization For almost all a € A:
(@ 1) € Xa and uq (@G, ) > Ua(Ta, pta) = P 7 + 4 4y > P €a
(3) Budget Balance for Club Types For each (w,) € Clubs:

Zﬂﬂ(w)q(w, T,7) = p - inp(m,7)

Thus, at an equilibrium, individuals optimize subject to their budget con-
straints and the sum of membership prices in a given club type is just enough
to pay for the inputs to clubs of that type.

A club quasi-equilibrium satisfies (1), (3) and (2') instead of (2):
(2") Quasi-Optimization For almost all a € A:
(€ 1) € Xa and g (24, 1) > Ua(@a, pa) = (02q) - (T 11) 2 P+ €
That is, nothing that is feasible and strictly preferred can cost strictly less

than agent a’s wealth. An equilibrium is necessarily a quasi-equilibrium.

In the exchange case, the possibility that quasi-equilibrium is not an equi-
librium is frequently viewed as a mere technical problem, and can be ruled
out by various simple assumptions (such as strictly monotone preferences
and strictly positive aggregate endowments). In the presence of indivisi-
bilities (such as club memberships), however, the issue is more subtle. The
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following example illustrates the problems that may arise when private goods
are used as inputs to club activities. (See Gilles and Scotchmer (1997) for an

example illustrating the problems that may arise when endowments are not
desirable.)

Example 3.2 There are two private goods, a single external characteristic
w and a single club type ¢ = (2,7) consisting of two people, and requiring
inputs inp(c) = (2,0). Agents can choose at most one club membership. All
agents are identical, with endowment (1,1), and utility function:

u(z,0) = 1—e %2

u(T,0w,e)) = VT1+ /12

where 6, is the list with unique membership (w,c). Because endowments
are desirable, the weak and strong cores coincide. In a core state, all agents
belong to clubs and consume x = (0, 1), so the entire supply of good 1 is
used as input to the club activity. However, this state is not an equilibrium
because the marginal rate of substitution of good 1 for good 2 is infinite, so
the price ratio p;/ps would have to be infinite also. On the other hand, the
state is a quasi-equilibrium with prices p = (1,0), ¢(w,c) = 1. (This is not
an equilibrium, because good 2 is free and every agent desires more of it.) &

In the familiar exchange setting, a quasi-equilibrium may fail to be an
equilibrium if some agents are in the “minimum expenditure situation:” con-
sumptions require expenditures exactly equal to wealth, and slightly smaller
expenditures are not possible. As the example above illustrates, this situ-
ation can arise easily in club economies because private goods are used as
inputs to club activities, and club choices are indivisible. The following as-
sumption (cf. Mas-Colell (1985)) is one of several that will guarantee that a
quasi-equilibrium is an equilibrium.

Let £ be a club economy and let (x, ;) be a feasible state. Write §; for
the consumption bundle consisting of one unit of good j and nothing else.
Say that (x, ) is club linked if whenever IUJ = {1,..., N} is a partition of
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the set of private goods and x,; = 0 for all 7 € I and almost all a € A, then
for almost all a € A there exist r € R, j € J such that

Ug(eq +105,0) > ug(Tq, fla)

That is, if, as in Example 3.2, the entire social endowment of the private
goods in [ is used to produce club activities, then for almost all agents a,
there is some good j ¢ I and some sufficiently large level of consumption of
good j such that agent a would prefer consuming his endowment together
with this large level of good 7, and belong to no clubs, rather than consume
the bundle x, in the club memberships p,. Say that &£ is club irreducible if
every feasible allocation is club linked.

Proposition 3.3 Let £ be a club economy for which endowments are desir-
able. If (z, 1), (p,q) is a club quasi-equilibrium and (x, ) is club linked, then
p>>0 and (z,pn), (p,q) is a club equilibrium.

Proof We show first that all private good prices are strictly positive. If
not, let I be the set of indices for which p; > 0, and let J # () be the
complementary set of indices. Fix i € I. If x, # 0 for some set of con-
sumers having positive measure, then some of these consumers could sell
a small amount of their consumption of x; and buy an unlimited quantity
of z; (for any j € J) and be strictly better off with a lower expenditure.
This would contradict the quasi-equilibrium conditions. We conclude that,
for each ¢ € I, x,; = 0 for almost all a € A. Club linkedness guarantees
that all consumers would prefer to consume their endowments plus a large
quantity of some commodity j rather than their quasi-equilibrium consump-
tion. Since aggregate endowments of private goods are strictly positive, the
endowments of some consumers have a strictly positive value and, by conti-
nuity of preferences, those consumers would prefer to consume a very large
fraction of their endowment plus a large quantity of commodity x; rather
than their quasi-equilibrium consumption. Again, this would contradict the
quasi-equilibrium conditions, so we conclude that all private good prices are
strictly positive.
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If (z,p),(p,q) is not an equilibrium, then there is an agent a who is
quasi-optimizing, but not optimizing. Hence there is a choice (2, ') € X,
which is strictly preferred to agent a’s quasi-equilibrium choice and costs no
more than his endowment. Desirability of endowments entails that =’ # 0,
so p-x' > 0. Continuity of preferences entails that there is a bundle z” such
that p-2” <p-2/, (", 1) € X, and (2", i') is strictly preferred to agent a’s
quasi-equilibrium choice, but costs strictly less than his endowment. This is
a contradiction, so the proof is complete. H

3.8 Pure Transfers

Equilibrium requires that the sum of membership prices in each club type
exactly pays for the required inputs. An equivalent notion will be more
convenient in proofs. Say that ¢ € R™ is a pure transfer if ¢ € Trans,
defined as:

Trans = {g € RM : ¢ =0 for each 1 € Cons}

Thus for each club type (7, 7) and ¢ € Trans, > cq 7(w)g(w,m,7v) = 0.

A pure transfer equilibrium is a feasible state (z,u) and prices (p,q) €
RY\ {0} x RM such that

(1) Budget Feasibility For almost all a € A:

1.
PTatq-flat Y, p~mlnp(ﬂ,7)ua(wm,7) < p-eq
(w,m,)

(2) Optimization For almost all a € A:

if (2, pa) € Xa and ua (25, 1) > Ua(Ta, fa)

1,
then — p-al, +q-p,+ >, p-mmp(mv)u;(wmm) > peeg
(w,m,7)

(3) Pure Transfers ¢ € Trans
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We define a pure transfer quasi-equilibrium in the obvious way.

The following lemma tells us that equilibrium (respectively quasi-equilib-
rium) and pure transfer equilibrium (respectively pure transfer quasi-equi-
librium) are equivalent notions; we leave the simple proof to the reader.

Lemma 3.4 Let £ be a club economy and let q,q* € RM be such that
* 1 .
q¢"(w,m,7) = q(w,m,7) +p- Wlnp(ﬁﬁ)

Then: (x,u1), (p,q) is a pure transfer equilibrium (respectively, pure transfer
quasi-equilibrium) if and only if (z, u), (p,q*) is a club equilibrium (respec-
tively, club quasi-equilibrium,).

4 The Welfare Theorems and the Core

For exchange economies, the first welfare theorem asserts that equilibrium
states are Pareto optimal. The corresponding result is easily established for
club economies.

Theorem 4.1 Fvery club equilibrium state of a club economy belongs to the
weak core and, in particular, is weakly Pareto optimal. If endowments are
desirable, every club equilibrium state belongs to the strong core and, in par-
ticular, is strongly Pareto optimal.

Proof Let £ be a club economy and let (z,pu) be an equilibrium state,
supported by the prices p € Rf \ {0},q € RM. If (2, 1) is not in the weak
core, there is a subset B C A of positive measure and a state (y,v) that is
feasible for B and preferred to (x, ) by every member of B. Feasibility of
(y,v) for the coalition B entails the material balance condition:

fmdi@) + [ ¥ inp(r) (e n) die) = [ e di@

(w,myy)eM
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and the budget balance condition for each club type (m,~):

Z ﬂ-(w)q<wa W?V) =p- il’lp(ﬂ', 7)

weN

Combining these with the consistency condition, we conclude that

/ (1, q) * (Yar Va) dA(a) = / p-eqd\(a)
B B
Hence there is a set B’ C B having positive measure for which

(2, q) - (Yo, ) <p-ep

for every b € B’. Since (y,v) is unanimously preferred to (x, 1) by members
of B, this contradicts the equilibrium nature of (z,u). We conclude that
(x,p) is in the weak core, as desired. That (z, u) is weakly Pareto optimal
follows immediately by taking B = A in the argument above. If endowments
are desirable, the weak and strong cores coincide and the sets of weak and
strong Pareto sets coincide, so the proof is complete. H

For exchange economies, the second welfare theorem asserts that every
Pareto optimal allocation can be supported as an equilibrium conditional
on a suitable reallocation of endowments. Surprisingly, the second welfare
theorem fails in club economies; for examples we refer the reader to our

working paper.t?

5 Core/Equilibrium Equivalence

In this section we establish that non-atomic club economies pass a familiar
test of perfect competition: The core coincides with equilibrium states.

0For exchange economies with a finite number of agents, the second welfare theorem
depends on convexity of consumption sets and preferences —requirements that fail in club
economies because club memberships are indivisible. However, for exchange economies
with a continuum of agents, the second welfare theorem does not require convexity of
consumption sets or preferences.
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Theorem 5.1 Let £ be a non-atomic club economy in which endowments
are desirable and uniformly bounded above. Then every core state can be
supported as a club quasi-equilibrium and every core state that is club linked
can be supported as a club equilibrium. In particular, if £ is club irreducible,
then the core coincides with the set of club equilibrium states.

The proof in Section 7 parallels the Vind (1964) and Schmeidler (1969)
proofs of Aumann’s core equivalence theorem for exchange economies: Con-
struct a preferred net trade correspondence and an aggregate net preferred
set, and apply the Lyapunov convexity theorem to show that the aggregate
net preferred set is convex. Use the core property to show that the aggregate
net preferred set is disjoint from a cone that represents feasible net trades
for all coalitions. Find a price that separates the aggregate net preferred
set from this cone and show that this is a quasi-equilibrium price. Use club
linkedness to conclude that the quasi-equilibrium is an equilibrium.

The argument contains two surprises that are not present in the exchange
case. The first is that we require endowments to be bounded. As the fol-
lowing example demonstrates, this is not merely an artifact of the proof.
If endowments are unbounded, the core may not coincide with the set of
equilibrium states and equilibrium may not exist.

Example 5.2 There is a single consumption good, two external character-
istics M, F' (male, female), and a single club type ¢ consisting of one agent
of each characteristic (i.e., monogamous marriage) and requiring no inputs.
Agents can choose at most one membership. Agents in the intervals [0,1/2)
and [1/2,1] are respectively males and females. Males love marriage and
females hate it:

uq(z,0) = =z for all a € [0, 1]
Ua(T,0010) = 2 for all a € [0,1/2) (males)
Ua(T,0(p)) = 1—e® forallac[1/2,1] (females)

where 6, is a list with a single membership (w,c). Endowments are ﬁ

It is easily checked that the initial state is the unique element of the core
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but is not an equilibrium: There is no upper bound on the amount men
would pay to enter a marriage, because males are willing to give up half their
endowment to enter a marriage, and male endowments are unbounded. But
no female is willing to enter a marriage at any price. &

The other surprise is that it will not be good enough to find prices (p, q)
that separate the aggregate net preferred set from the cone representing
feasible net trades; we must also be sure that p # 0. To achieve this we
will separate the aggregate net preferred set from a cone that is larger than
the cone representing feasible net trades. To show that the aggregate net
preferred set is disjoint from this cone, we will need to show that if (y,v) is
a state, B C A is a coalition, and v is “nearly” consistent for B, then there
is a large subset B’ C B such that v is (exactly) consistent for B’. This idea
is formalized in Lemma 7.1.

6 Existence of Equilibrium

Theorem 6.1 Let £ be a non-atomic club economy. If endowments are de-
sirable and uniformly bounded above, then a club quasi-equilibrium exists. If
wm addition £ is club irreducible, then a club equilibrium exists.

The structure of the argument will be familiar: construct an excess de-
mand correspondence, use a fixed point theorem to find a zero, and show
that this zero is an equilibrium. However, there are many subtleties:

e The balance condition for private goods is that the excess demand for
private goods is 0, but the balance condition for club memberships is
that the demand for club memberships is in Cons.

e In equilibrium, prices for private goods must be positive, but prices
for club membership prices may be positive, negative or 0. Hence the
relevant space of all prices is not a proper cone, and the usual forms of
the excess demand lemma will not apply.
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e Private good prices can be normalized to sum to 1, but club member-
ship prices admit no obvious normalization or bound.

e We assume that all private goods are present in the aggregate, but
not that all external characteristics are present. Further, some club
types might not be chosen at equilibrium. In effect we must construct
reservation prices for club memberships which are not available or are
not chosen.

As the following example illustrates, club membership prices may be in-
determinate and unbounded.

Example 6.2 There is a single consumption good, and two external charac-
teristics, QQ = {M, F'}. There are two club types ¢, ¢o, each consisting of one
male (M) and one female (F), and requiring no inputs. Agents can choose
at most 2 memberships. Agents in [0,1/2) are male; agents in [1/2,1] are
female. Each agent’s endowment is 1. Utility functions are:

Ua(.’E, 0) =

ua<x> 6(w,01)> = Ua(l', 5(w,cg)) = 1l—e™
Ua (T, 20(0c1)) = U(7,20(cy) = 1—€77
Ua(.’E, 5(w,cl) + 6(w702)) = 2z

where w = M, F' according to whether agent a is male or female, 26, ) is
the list consisting of 2 memberships of type (w,c) and 8¢, c;) + O(w,c,) is the
list consisting of one membership of type (w, ¢;) and one membership of type
(w, o). Thus, both males and females hate belonging to a single club or two
clubs of the same type, but love belonging to two clubs of different types.
The core consists of a single point: all agents choose one club of each type
and consume their endowments. This state is supported as an equilibrium
by any private good prices and club membership prices such that p > 0 and:

q(M,c1) +q(F,a) = 0
q(M,cz) +q(F,ca) = 0
q(M, c1) + q(M, ca) 0
q(F.c1) +q(Fea) = 0 L
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The proof circumvents the indeterminacy and unboundedness of club
membership prices by focusing on list prices, which can be bounded in the
following way. Normalize private good prices to sum to 1. By assumption,
individual endowments are uniformly bounded, so individual incomes are uni-
formly bounded. Hence if ¢ € R™ is a vector of membership prices, ¢ € Lists
is a list, and if the list price ¢ - £ exceeds the bound on individual incomes,
then the demand for ¢ will be 0. Thus the upper bound on individual incomes
provides an upper bound for list prices. To construct a lower bound for list
prices (keeping in mind that list prices might be negative), we show that, for
lists chosen at equilibrium, if some individuals are paying large negative list
prices, then others are paying large positive list prices. The construction we
use is formalized in Lemma 7.2.

The existence proof in Section 7 has 8 steps:

1 For each positive integer k, construct a perturbed economy £* by ad-
joining a few agents of each external characteristic, with utility func-
tions linear in private good consumption.

2 For the perturbed economy £*, use the adjoined agents to identify a
compact set of prices in which to find an equilibrium.

3-6 Construct an excess demand correspondence for £¥, and find a fixed
point that maximizes the value of excess demand. Show that this is
an equilibrium for the perturbed economy: excess demand for private
goods equals 0 and demand for club memberships is consistent.

7-8 The previous steps give an equilibrium for each £F, with associated
prices (p*,¢*). Now show that there is a sequence of such equilibrium
prices that satisfy a uniform bound independent of k. Take limits
of these uniformly bounded equilibrium prices as k — oo and apply
Fatou’s lemma to construct an equilibrium for £.
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7 Proofs

We begin by formalizing the idea that if a choice function v is “nearly”
consistent for a coalition B then it is exactly consistent for some large subset
of B. We need some notation. For L ¢ R™ write conv (L) for its convex
hull. Let

Lists),, = {¢ € Lists: (| < M}
D = {L C Listsy : conv(L) N Cons = (}
D = inf{dist (conv(L),Cons): L € D}

Lemma 7.1 Let B C A be a measurable set of positive measure and let
v : B — Lists); be a measurable function. Then there is a measurable subset
B’ C B such that

Afwu@)e Cons

1

Aqumm—ﬁ&aQmemxbm) (1)
B

Proof If Lists); C Cons, then dist ([ v, d\(b) ,Cons) = 0, D = () and

D = oo, so we may take B’ = B. Assume therefore that Lists;; ¢ Cons. For

le LiStS]V[, write Bg = {b € B: vy = é} Let L = {f € LiStSAJ : )\(Bg) > 0}

Note that >, A(By) = A(B) and

A(Be)
\(B)

/B wdA(b) =S A(B) L= A(B) S

leL leL
In particular

L%M@EMmmm@)

If conv (L) N Cons = () then the right hand side of (1) is non-positive, so
we may take B, = () for each ¢ and B’ = J,c;, B; = (). We therefore assume
conv (L) N Cons # ().

Consider the linear programming problem:

maximize Z 57

leL
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subject to 0 <6 < A\By)
ZﬂgE € Cons

leL

The feasible set for this problem is non-empty (it contains the origin), so this
problem has a solution. Let {3, : ¢ € L} be any such solution.

For each ¢, write oy = AN(By) — B¢ > 0. Write L' = {{ : ap > 0}. If
L' = () we are done, so assume not. Write & = min{ay : ¢ € L'}. If
conv (L) N Cons # () there are non-negative real numbers €, summing to
1 with Y7 €0 € Cons. Set 3 = [y + e for { € L' and gy = [, for
¢ ¢ L'. Then {5 : ¢ € L} satisfies the constraints in the linear programming
problem and yields a larger value of the objective, contradicting the choice
of {f,} as the solution. We conclude that conv (L") N Cons = {).

For each ¢ € Lists,;, non-atomicity of A\ guarantees that we can choose
Bj C By such that A\(B)) = (. Set

=UB

lel

By construction,

/B mdA(b) = Y A(B))¢ € Cons

leL

We need only estimate A\(B’). Because Cons is a linear subspace, for every
z € RM y € Cons,r € R, we have dist (x —y, Cons) = dist (z, Cons) and
dist (rz, Cons) = rdist (z, Cons). Hence,

dist (D A(By)¢,Cons) = dist (D A(By)l —>_ Bel), Cons)

teL teL teL
= dist (> _ (A(Br) — B)¢, Cons)
el
= dist (D asl, Cons)
ter
= dist y [ ]E Cons
(g;l egf e )
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= (X o) dist ([Z é:‘;aé €,C0ns>
> é;@dm@giﬂﬂhm)
::(Eipuﬁy—mpdm4mmwyycmm)
> gjz;p(Bo—ﬂA

= Dg[A(Be)—ﬁe]

= DIAB) - A(B)]
Rearranging terms yields the desired inequality (1). Il

With this result in hand, we turn to the proof of core equivalence.

Proof of Theorem 5.1 Let (x, 1) be a core state. We show that (z, u) can
be supported as a pure transfer quasi-equilibrium.

Step 1 For each agent a, consider the preferred set
(I)(CL) = {(1‘,€) € Xo: ua(a:,ﬁ) > Ua(l'a;,ua)}

For each club type (m,7) € Clubs, ﬁinp(w, «v) is the bundle of goods each
member of (7,7) would be required to contribute to the club (7,~) if inputs
were imputed equally to all members. For ¢ € Lists, define

1,
T(£> = Z ‘g(wu T, 7)mlnp(ﬂ-’ 7)
(w,m,y)EM

This is the total bundle of goods that an individual choosing list ¢ would
have to contribute if inputs were imputed equally to all members of all clubs.

For each agent a, write
Y(a) = {(z,0) e RN x RM : (z+ e, — 7(0),0) € ®(a)}

and ¥(a) = ¢(a) U{0}. It is easily checked that ¥ is a measurable corre-
spondence. Let

Z:/A\IJ(CL) d\(a)
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Step 2 In view of the Lyapunov convexity theorem, Z is a non-empty convex
subset of R x R™. (See Hildenbrand (1974).)

Step 3 Write 1 = (1,...,1) € Rf . By assumption, endowments are
uniformly bounded; say e, < W1 for each a € A. Set

C={zpn ecR"xRM:z2<0, nc Cons}

C is a convex cone in RY x RM. The core property of (x,u) implies that
Z N C = () and hence that Z can be separated from C by prices (p,q). Un-
fortunately, it might happen that p = 0. (See Example 5.2.) To guarantee
p # 0, we separate Z from a “fatter” cone. Define

C*={(z,0) e RExRM:z < —%dist (@, Cons)1}
We claim that Z N C* = ().

Suppose that Z N C* # (); we construct a blocking coalition. Choose
(x*,u*) € ZNC*. By definition, there is a measurable selection a — (Ya, V)
from the correspondence ¥ such that

(@ 17) = [ (v ) dA(@)

Let B={a€ A: (ya,va) € ¥(a)} be the set of agents for whom (y,, V) is
in their net preferred set. Note that A(B) > 0 and

(@ 1) = [ (9arva) dX(a) 2)
We now apply Lemma 7.1 to choose B’ C B such that
/ v,dA(a) € Cons (3)

AB) > A(B) -~ pdist [ vudx(@) , Cons) (4)

We assert that B’ is a blocking coalition. To see this, note first that, be-
cause endowments are bounded above by W1, net preferred sets are bounded
below by —WW1. Hence

/B YadA(a) > —N(B)W1
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Equation (2) and the fact that (*, u*) € C* entail that

/yAM@<—Em%q}mx@xbmﬂ
B D B
and hence,
<mu/%wm%&m@<MmD
B

Together with (4), this implies that A(B’) > 0.

Define (Z, /1) by (Za, fta) = (Yo + €q — T(Va), Va). To see that (Z, /) is
feasible for B’ note first that equation (2) and the definition of C* entail that

1
= / Yo dX < — mdist (u*, Cons)
B D

w1 .
= —lest (/B VadA(a) , Cons) (5)

Because integration is additive,

/%w:/%w+/ Yo dA (6)
B B B\B/

By the bound on endowments and the definition of excess demand,

| vadr= =B\ B)W1 (7)
B\B'
Combining equations (4), (5), (6) and (7) yields [g ya dA(a) < 0, so
L/ [F0 + 7(va)] dA(a) gl/ ea d\
B/ B/

which is the material balance condition. Equation (3) is consistency, so we
conclude that (z, 1) is feasible for B’. By construction, (z, 1) is preferred to
(x, 1) by every member of B’ so this contradicts the assumption that (x, p)
is a core state. We conclude that Z N C* = (), as asserted.

Step 4 We now use the separation theorem to find prices (p, ¢) € RY x RM,
(p,q) # (0,0) such that

(p,q) - (7, 1)

(p,q) -

<0 for each (z, 1) € C*
>0 for each z € Z
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Because C* contains the cone —RY, x {0}, it follows that p > 0. Because C*
contains the subspace {0} x Cons, ¢ vanishes on Cons and hence ¢ € Trans.

We claim that p # 0. For suppose p = 0. By construction, (p,q) # (0,0)
so q # 0. Hence there is a i € R™ such that ¢- i > 0. For € > 0 sufficiently
small, (—1,eu) € C*,so (p,q) - (—1,ei) < 0. However

(p,q) - (=1,ef1) = (0,q) - (—1,ep) =eq- i

which, by our choice of i, is positive. This is a contradiction, so we conclude
that p # 0, as desired.

We claim that (z, 1), (p, ¢) is a pure transfer quasi-equilibrium. Feasibility
is guaranteed by assumption. To verify budget feasibility, write

E, = {GEAip'[$a+7(ﬂa)]+Q'Ma>p'€a}
Ey, = {GEAip'[$a+7(ﬂa)]+Q'Ma<p'€a}

E is the set of agents for whom expenditure exceeds income, and E, is the
set of agents for whom income exceeds expenditure. We must show A(E;) = 0
(so that almost all agents choose in their budget sets). Measurability of the
endowment mapping e implies that FE;, 5 are measurable sets. Feasibility
of (z,u) implies that if A(E;) > 0, then A\(E;) > 0. Strict monotonicity of
preferences in private goods means that, for each a € A and each ¢ > 0, the
choice vector (x, + €€, u,) is strictly preferred to (z,, t,). Hence if a € Es
then there is an ¢, > 0 such that (x, + €48, pa) costs strictly less than e,
and is strictly preferred to (x,, ). We may choose €, to be a measurable
function of a. Define (z, 1) : A — RJI x R™ by

o (o + €0l + T(lta) — €a, pta) if a € By
(@, 1) = -
(0,0) otherwise

A

By construction, (Z, i) is a measurable selection from the correspondence W,
SO [4(Za, fla) dX(a) € Z. However, our construction guarantees that

@)+ [ (i) dX@) = [ (p.) - (G0 1a) dA(@) < 0
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which contradicts the fact that (p, q) separates Z from C*. We conclude that
A(F1) = 0; almost all agents choose in their budget sets.

To check the quasi-optimization conditions, let E3 be the set of agents who
are not quasi-optimizing in their budget sets. Let H C R} be any countable
dense subset. By definition, a € FEj3 if and only if there is a choice vector
(Ya> va) € Xo = R x Lists, which is strictly preferred to (x4, tta) and costs
strictly less than a’s endowment; equivalently (because H is dense), a € Ej
if and only if there is a choice vector (y,,v,) € X, = H x Lists, which
is strictly preferred to (x4, p,) and costs strictly less than a’s endowment.
It follows that Ej3 is a measurable set, and that the choices (y,,v,) can
be chosen to depend measurably on a € FE3. Suppose A(F3) > 0. Define
(z,0) : A— RY x RM by

| WatT(ve) — €qyva) ifa€ Es
(%o, fla) = { (0,0) otherwise

By construction, (Z, 1) is a measurable selection from the correspondence W
SO [4(Za, fla) dX(a) € Z. However, our construction guarantees that

(0:0) [ (i) AN@) = [ (.) - (F 1) dN(a) < 0
which contradicts the fact that (p, q) separates Z from C*. We conclude that
A(F3) = 0: almost all agents are quasi-optimizing.
It follows that (z, i), (p,q) is a pure transfer quasi-equilibrium. Setting

1

dm + TP il’lp(ﬂ', P)/)
||

* p—

m

for each m € M yields a quasi-equilibrium (z, p), (p,¢*). If (z, ) is club
linked, it follows from Proposition 3.3 that (z, i), (p, ¢*) is an equilibrium.

Finally, if £ is club irreducible, then every feasible state is club linked and
hence every core state can be supported as an equilibrium. By Theorem 4.1,
every equilibrium state belongs to the core. Hence the core coincides with
the set of equilibrium states. Il
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We now turn to the existence of equilibrium. We begin with a lemma
which will allow us to construct upper and lower bounds for list prices. By
analogy with a notion from cooperative game theory, we say that a subset
L C Lists), is strictly balanced if there are strictly positive real numbers
{er() : £ € L} (called balancing weights) such that > ,.; er(¢)¢ € Cons.

Lemma 7.2 There is a constant R* > 0 such that: If L C Listsy is a
strictly balanced collection and q € Trans is a pure transfer then
A > —R* ming -
et 2 St

Proof For each strictly balanced collection of lists L, fix balancing weights
{€¢/.()}. By definition, balancing weights are strictly positive so the sum
Br = ey, €, (0) is strictly positive. Define €,(-) = %GL(J. Because Cons is
a subspace, {er(-)} is also a family of balancing weights for L, and of course
this family sums to 1. Set

R* = min{ez(¢) : L is a strictly balanced collection ,¢ € L}

R* is well-defined and R* > 0 because balancing weights are strictly positive
and the set of strictly balanced collection of lists is finite.

To see that R* has the desired property, consider a strictly balanced
collection L with balancing weights €/ (-) constructed above. Observe that

der()g-lt=q-> e ()l =0

leL leL

Set Ly ={feL:q-£>0}and L_ =L\ L. Collect L terms on the left
hand side and L_ terms on the righthand side to obtain:

doell)g-t== > e(l)g-L (8)

= q€L_

Because the coefficients €, (¢) are positive and sum to 1, we have:

el el

maxq-{ = [Z eL(E)] r?eaqu-f >

> EL(E)] maxq- £ > er(fg-£ (9)

lel lel
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Because ¢ - ¢ < 0 for each ¢ € L_, we have:

-2 alatz-pnalpne (2 —pipa(ppe . (10)

Combining (8), (9) and (10) and recalling the definition of R* yields the
desired inequality. Il

Proof of Theorem 6.1 Assume without loss that A(A) = 1. By assump-
tion, aggregate endowment € is strictly positive and individual endowments
are uniformly bounded above; say that e > w1l >> 0 and that ¢, < Wy1 for
all a € A. Write W = max{W,1}. As in the proof of Theorem 5.1, write

I,
T(£> = Z ‘g(wu T, 7)W1np(ﬂ-’ 7)
(w,m,y)EM i

Step 1 Fix an integer k& > 0. Choose a family {A* : w € Q} of pairwise
disjoint intervals in R, each of length 1/k. Set

AP =AU U A"
weD
The agent space for the perturbed economy £ is (A*, F*, \), where F* is the
o-algebra generated by F and the Lebesgue measurable subsets of U,eqA”,
A is A on A and Lebesgue measure on U,coA¥. Note that \¥(AF) =14 2.
External characteristics, consumption sets, endowments and utility functions
of agents in A are just as in the original club economy £. For agents a € A*,

we define:
Wy = W
X, = RY x{feListsy : {(,,7) =0if o # w}
e = W1
uq(z,0) = |z| for all (z,0) € X,

Step 2 The demand functions of the added agents are such that, for com-
modity prices near the boundary of the simplex and for membership prices
that are large in absolute value, aggregate excess demand for commodities
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will be impossibly large. As a consequence, we can write down compact
price sets that contain an equilibrium price for £¥. To define these sets,
write M* = max{|x| : (m,7) € Clubs}. Choose a real number € > 0 so small
that

w 1

[1—(N—1)] [m—W(lJr -

)1 —e(N — l)W(l—l—’—gkz’) >0

Having chosen ¢, choose a real number R > 0 so big that R > 2|7(¢)| for all
¢ € Lists); and
R 2]

[1— (N —1)¢] le:NM* -wa +?)] —e(N-1)W({1+-=—)>0

Of course €, R depend on k. Define a price simplex for private goods and a
bounded price set for club memberships:

A. = {peRY: > p,=1andp, > e foreach n}
neN

Qr = {q€ Trans: |¢,| < R for all m € M}

Step 3 We define an excess demand correspondence. Let p € A.,q € Qg.
For each agent a € A, write

Bla,p,q) ={(z,0) e X :p-x+q-L+p-7(l) <p-e,}

This is agent a’s budget set, assuming that he must pay an equal share of
the inputs to club activities. Let

d(a,p,q) = argmax {ug(z,?): (x,¢) € B(a,p,q)}
C(a,p,q) = {(@+7((),0) — (€4, 0) : (z,¢) € da,p,q)}

be agent a’s demand set and excess demand set. Excess demand sets are
uniformly bounded because endowments are bounded, private good prices
are bounded away from 0 and club membership prices are bounded above
and below. The correspondence (a,p, q) — ((a,p,q) is measurable; for each
a, the correspondence (p,q) — ((a,p,q) is upper hemi-continuous since en-
dowments are assumed to be desirable. Define the aggregate excess demand
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correspondence Z : A, X Qr — Rﬂ\: x RM as the integral of individual excess
demand correspondences:

Z(p,q) = /Ak ¢(a,p,q) dX(a)

Because it is the integral of an upper hemi-continuous correspondence with
respect to a non-atomic measure, Z is upper hemi-continuous, with compact,
convex, non-empty values.

Step 4 We find a fixed point of the excess demand correspondence. Indi-
vidual income comes from selling endowments and (perhaps) receiving subsi-
dies for club memberships. The value of the each individual’s endowment is
bounded by W. Because club membership prices lie in the interval [— R, +R)
and individuals can choose no more than M club memberships, subsidies
for club memberships are bounded by M R. Because private good prices are
bounded below by ¢, individual demand for each private good is bounded
above by %(W + RM), and individual excess demand for each private goods
lie between —W and %(W—l— RM). Hence aggregate excess demand for private
goods lies in the compact set

X={zeR"N: - \NAHYW <z, < /\(A’“)é(W + RM) for each n}

Because individuals are constrained to demand at most M club memberships,
aggregate demands for club memberships lie in the set

C={peRy: Y j(m)<A")M}
meM

Define a correspondence ® : A, X Qp x X x C — A, X Qr x X x C by

O(p,q,x, 1) = {argmax {(p*,q") - (z,p) : (p*,q%) € Ac X QR}] X Z(p,q)

It is easily checked that ® is upper hemi-continuous with compact convex
values. Hence Kakutani’s fixed point theorem guarantees that ® has a fixed
point. Thus there is a price pair (p¥, ¢*) € A. x Qr and a consumption/club
membership pair (2%, i*) € Z(p*, ¢*) such that

(0", d") - (%, 1) = max{(p",¢") - (", ") = (0", ¢") € A % Q)
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Walras’s law implies that (p*, ¢*) - (2%, %) = 0.
Step 5 We show in several steps that z* = 0 and ji* € Cons.

Step 5.1 We show first that ¢* - i* = 0. Suppose not. We obtain a
contradiction by looking at excess demands at prices p*, ¢* of agents in A*\ A.
Because 0 - ji* = 0, maximality and the definition of ® imply ¢* - z* > 0.
Maximality entails that ¢ € bdy Qg so that |¢F,| = R for some m € M.
Budget balance for club types means that if some price has large magnitude
and is positive then some other price must have large magnitude and be
negative. Thus there is a membership m* such that ¢¥. < —R/M?*. An agent
b € A, could obtain a subsidy of R/M* by choosing the membership m* and
no other. Such an agent, finding all private goods to be perfect substitutes
and deriving no utility from club memberships, will consume only the least
expensive private good(s) and club memberships with non-positive prices.
Because R > 2|7({)| for each ¢, the wealth used on inputs to clubs is less
than g. Thus, b’s demand for the least expensive private good — which we
may as well suppose is good 1—is at least

k _k
>
d1<b7p ,q )— 2NM*

Because A\(A*) = 1/k and individual excess demands are bounded below by
—W1, aggregate excess commodity demand z* satisfies

1 R Ie]
k
> _ ikl
a2 ponar WA+
Q0
2E > —W(1+’—k’) if n>1

Define p € A, by:

P11 = ]_—(N—l)&f
DPn = € ifn>1

(11)

A little algebra shows that

i 1

€2
s~ W - (V- WL+ =)

p-zkz[l—(]\f—l)e] ’
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Our choices of R, e guarantee that the right side is strictly positive, so
(p,0) - (=%, i%) > 0= (0", ¢") - (=", ")
which contradicts maximality. We conclude that ¢* - i* = 0, as desired.

Step 5.2 We show next that i* € Cons. If not, we could find a pure
transfer ¢* € Trans such that ¢* - i* > 0 and hence could find ¢** € Qy such
that ¢** - i* > 0, contradicting maximality.

Step 5.3 We claim that p* > ¢ for each n. Suppose not. We once again
obtain a contradiction by considering the excess demand of agents b € A*\ A.
As before, we note that each such agent will consume only the least expensive
private good(s) and club memberships with non-positive prices. It follows
that b’s demand for the least expensive private good — which we may as well
suppose is good 1—is at least

w
k k > 2
d1<b7p »q ) - N€

As before, this means that aggregate excess commodity demand z* satisfies

1 W Ie]
A
a2 g Wi+
Q0
&> —W(1+%) if n>1

Defining p as in (11), a little algebra yields

w

[

p-2">[1—(N—1) W(l—i—’—%’) ?

Our choice of € guarantees that the right side is strictly positive so
(p,0) - (2%, 7%) > 0= (p",¢") - (=", ")

which again contradicts maximality. We conclude that pf > e for each n.
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Step 5.4 We show that 2* = 0. Notice that (p*,q"*) - (2%, ") = 0 and
q* - ¥ = 0so p* - 2¥ = 0. Hence, if 2*¥ # 0 there are indices i, j such that
z < 0and 2§ > 0. Define p by

pi = pf—1(f—¢)
p; = pi+50f—e)
ﬁn = pfl 717&2,]

Because pf > ¢, it follows that p € A.. Because p* - 2% = 0, it follows that
p-2¥ > 0, a contradiction to maximality. We conclude that z¥ = 0.

Step 6 By definition, there is a selection (2%, i*) from the individual excess
demand sets which integrate to (2%, i*). Set ¥ = 2* + e, — 7(ji,) so that
(xF, i*) is a state of the economy EF. We have just shown that excess demand
2¥ is 0, and that i* € Cons, so we conclude that (2%, @*), (p*, ¢*) constitute
a pure transfer equilibrium for &*.

Step 7 By construction, club membership prices ¢* are bounded by R, but
R depends on k. We now replace the sequence of (¢¥) by a bounded sequence
(%) which leads to the same demands.

Passing to a subsequence if necessary, we may assume without loss that
for each ¢ € Lists;, the sequence (¢" - £) converges to a limit Gy, which may
be finite or infinite. Write:

L = {{elListsy :¢"-{— G,eR}
L, = {¢€Listsy:¢" £ — +00}
L. = {{e€Listsy:q¢" {— —occ}

Choose G € R so large that |¢F - £| < G for each k, each £ € L.

Define the linear transformation 7" : Trans — R* by T'(q), = q-£. Write
ran T = T(Trans) C R” for the range of 7' and ker T = T~%(0) C Trans
for the kernel (null space) of 7. The fundamental theorem of linear algebra
implies that we can choose a subspace H C Trans so that H NkerT' = {0}
and H + kerT' = Trans. Write 7|y for the restriction of 7' to H. Note
that Tjy : H — ran T is a one-to-one and onto linear transformation, so
it has an inverse S : ran T' — H. Because S is a linear transformation, it
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is continuous, so there is a constant K such that |S(z)| < K|z| for each
x €ran 1.

Let R* be the constant constructed in Lemma 7.2. Choose kg so large
that k > ko implies

¢t > +2KGM +W if ¢ € L

¢ < —2KGM—% if ¢ e L_

Write ST for the composition of S with 7. For each k > kg set
7" = ST(q") — ST(¢™) + ¢™ € Trans
Because S,T|y are inverses, the composition 7'S is the identity, so

T(7") = TST(¢") — TST(¢*) + T(q*) = T(¢")

We assert that for k > ko, i* ¢ LU L, for any a € A*. If a € A* then
q" - ¥ < W (because the value of endowment is bounded by W) so ¥ & L,
by construction of L. Since {fi*} are strictly balanced and ¢* € Trans, it
follows from Lemma 7.2 that minge 4» {¢*- 1%} > — -5 max,c 4x{¢*- ik} > —%,

R*
and hence [i* ¢ L_ by the construction of L_.

Chose k; > ko so that ¢* - ¢ < ¢ - ¢ — 2KGM for all £ € L_ and
all k > k. We claim that for k > ki, (2F, g*), (p*,3") is a pure transfer
equilibrium for £F. Because (2F, i*), (p*, ¢%) is a pure transfer equilibrium,
it suffices to show that, for almost all a € A* the choice (z¥, z¥) is budget
feasible and optimal at (p¥, g%). We have shown above that ¥ € L for almost
all a; by construction g*-¢ = ¢*-£ for all £ € L because T(q%) = T'(¢*). Hence
choices are budget feasible. Suppose then that (y,r) is budget feasible for
a at prices (p¥, ") and preferred to (z¥, i*). Budget feasibility of (y,v) at
prices (p*, ¢*) implies that ¢*-v < W and hence ¢*-v < W +2KGM because
|ST(¢*)| < KG and |ST(¢*)| < KG. Thusv ¢ L,. For £ € L_ and k > ki,
we similarly obtain g* - £ > ¢* - ¢ — 2KGM > ¢*¢. Thus, ¢°- ¢ > ¢* - ¢ for
¢ c L_. Hence, ¢"-¢ > ¢*- ¢ for ¢ € L_ U L. Thus, budget feasibility of
(y,v) at prices (p*,q") implies budget feasibility of (y,v) at prices (p*, ¢*),
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so (z¥, 1) is not optimal prices (p¥, ¢¥). It follows that (x*, @*), (p*, ") is a
pure transfer equilibrium for &*.

Step 8 By construction, |¢* - ¢| < 2KGM + |¢*¥ - 4| for k > ko and all
lists £, so the prices of lists are bounded. Because singleton memberships are
themselves lists, it follows that (¢*) is also a bounded sequence in Trans.
We thus have bounded sequences (p*), (7%), (u*). Passing to a subsequence
if necessary, we may assume that p* — p* € A, ¢ — ¢* € Trans, i* — p* €
Cons. The sequence (ji*) is uniformly bounded, hence uniformly integrable,
so Schmeidler’s version of Fatou’s lemma (see Hildenbrand (1974, p. 225))
provides a measurable mapping (z*, u*) : A — Rf x RM such that i) for
almost all a € A: (2%, uk) € B(a,p*, ¢*); ii) for almost all a € A: (2, )
belongs to agent a’s quasi-demand set (that is, there does not exist (z/,¢') €
X, such that u.(2',0) > uq(xf, p) and (p*,¢*) - (', 0) +p* - 7(¢') < p* - eq;
i) fqlzs + 7(u)]dX < € iv) [, uid\ = p*. Conditions i) and ii) together
imply that (p*, ¢*) - (z%, ) + p* - 7(uk) = p* - e, for almost all a, so

v e [l an) = o

That is, left over goods (if any) are free. Distributing these free goods arbi-
trarily yields a pure transfer quasi-equilibrium (x2*, u*), (p*, ¢*) for £. Club
irreducibility implies that (x3*, u¥), (p*, ¢*) is a pure transfer equilibrium for
£, so the proof is complete.!! W

HBecause utility functions are strictly monotone in private goods, no goods are free at
equilibrium, so in fact there are no leftover goods to distribute.
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