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Abstract

We apply the dynamic stochastic framework proposed in the recent evolutionary literature

to a class of coordination games played simultaneously by the entire popula tion. In these

games, payo¾ s whence best replies are determined by a summary statis tic of the popula tion

strategy pro¿ le. We demonstrate that with s imultaneous play, the equilibrium selection de-

pends crucia lly on how best responses to the summary sta tistic remain piece-wise constant.

In fact, a ll the strict Nash equilibria in the underlying stage game can be declared stochasti-

ca lly stable depending on how the best response mapping genera tes piece-wise constant best

responses. Furthermore, we show that if the best response mapping is suÁ ciently asymmet-

ric, the expected waiting time until the unique stochastica lly s table state is reached is of the

same order as the mutation rate , even in the limit as the popula tion s ize grows to in¿ nity.

Per Svejs trup Hansen

Univers ity of Copenhagen, Department of Economics

Studiestraede 6, 1455 Copenhagen K, Denmark



1 Introduction

We apply the dynamic stochastic framework proposed in Kandori, Mailath and Rob (1993)

(henceforth KMR) to a class of coordination games played simultaneously by the entire

popula tion. This is taken to refer to a context where the interaction between players are weak

and di¾ use and therefore does not lend themselves to modeling with pa irwise interaction,

anonymous or otherwise.

We choose to model the weak and di¾ use interaction among agents in such away that

individua l payo¾ s depend on the player's own strategy and a summary sta tistic of the popu-

la tion's stra tegy pro¿ le. Speci¿ cally, we assume that each player's s tra tegy space is discre te

and consis t of- linearly ordered strategies, and, as is often assumed in economic models ,

the sta tis tic is taken to be the mean of the current s trategy dis tribution.

In the class of games studied in this paper players would try to coordinate since they

rece ive a strictly higher payo¾ from playing a stra tegy that matches the current popula tion-

wide mean, than from playing any other stra tegy. This implis that there are- strict Nash

equilibria in this class of games. In addition we posit that the stra tegies are tota lly rankable

in the Pareto sense, and that coordinating on a higher va lue of the statis tic gives the player

a strictly higher payo¾ than coordination on a lower one.

Note that s ince there are more average numbers than stra tegies, the best response map-

ping cannot be one-to-one. Therefore best responses are piece-wise constant around a given

strategy. One of the contributions of this paper is to demonstrate that with simultaneous

play, the determination of the stochastica lly s table states depends crucia lly on how best

responses remain piece-wise constant. In fact a ll the strict Nash equilibria in the underlying
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stage game can be declared stochastica lly s table depending on the way piece-wise constant

best responses are speci¿ ed. This result holds even when we approximate a continuous strat-

egy space, i.e . when we by-pass any arti¿ cia l cons idera tions that could be associa ted to the

discre teness of the players ' s trategy space. Furthermore, we show that if piece-wise constant

best responses are suÁ ciently asymmetric, the unique stochastica lly stable sta te consis ts of

a ll players playing one of the ir extreme strategies (which one depends on the way the asym-

metry goes). In this case the expected waiting time until the unique stochastica lly s table

state is reached is of the same order as the mutation rate, even in the limit as the popu-

la tion s ize grows to in¿ nity. Hence, unlike in many models of random pairing interaction,

convergence may in fact be very rapid even though the mutation rate is small.

Our motivation is threefold. Firs t, much research in both traditiona l and evolutionary

game theory has been devoted to discriminate between equilibria in games that exhibit mul-

tiple strict Nash equilibria . In coordination games many hold the be lie f that the Pareto

dominant equilibrium stands out as a focal point, and thus should be selected as the equilib-

rium. Other apply the concept of risk dominance introduced by Harsanyi and Selten (1988),

as the re¿ nement crite rion. In genera l, the two concepts , Pare to eÁ ciency and risk domi-

nance, di¾ er. However, in symmetric pure coordination games they coincide. Kandori and

Rob (1995) show that for generalzz pure coordination games the Pareto eÁ cient equilib-

rium is se lected as the unique stochastica lly stable state , when players are randomly matched

in pairs . In a recent article Robles (1997) cons iders a model which is s imilar in structure

to ours. That is , he studies a s imultaneous play coordination game that a lso applies the

evolutionary dynamics of KMR. What Robles (1997) shows is that in coordination games

with s imultaneous play and payo¾ s determined by ´averaged strategies,´the stochastica lly
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stable states are bounded away from the extreme stra tegies, including the Pareto eÁ cient

Nash equilibrium. Apparently, there is a stark contrast between random pairing and simul-

taneous play. But as we show, the results in Robles (1997) are accounted for by the way he

de¿ nes the piece-wise constant best response mapping. The Pareto eÁ cient equilibrium may

be se lected as stochastica lly s table as may any other strict Nash equilibrium, depending on

deta ils of the best response mapping.

Second, one of the criticisms of the relevance of the concept of s tochastic s tability is that

the speed of convergence may be very s low, indeed. The inclusion of a noise term meant

to capture for instance mutations or trembles, makes all the strict Nash equilibria occur

with positive probability. However, some may be more like ly than others. If the long run

probability of a (subset of) s trict Nash equilibria does not vanish as the noise approaches zero,

these states are stochastica lly s table . The problem is, as pointed out by Ellison (1993) among

others, that if the sta te initia lly is in a non-stochastica lly s table sta te , convergence may be

so slow that for a ll practica l purposes, the stochastica lly stable sta tes are never reached. In

fact, Binmore, Samuelson and Vaughan (1995) have estimated that going from the payo¾

dominant equilibrium to the risk dominant one in the KMR-model, has an expected wait of

d3�d(�1 periods, when the number of players ared((, the noise-rate isdbd((, and the payo¾ s

are such that a t leastnn of a player's opponents must play the risk dominant equilibrium

strategy to induce a switch in the agent in question's best reply. Our model which have

features in common with Ellison's (1996) ana lys is of s tep-by-s tep evolution, shows that if

piece-wise constant best responses are suÁ ciently asymmetric, convergence is of the same

order as the mutation rate even in the limit as the popula tion s ize grows to in¿ nity. Thus,

another important di¾ erence between random pairing and simultaneous play.
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Thirdly, apart from Robles (1997), the evolutionary litera ture has not thoroughly anal-

ysed games with s imultaneous play, even though Crawford (1991, 1997) forcefully argues for

introducing genuine simultaneous interaction into this litera ture. What seems relevant in

many models of economic theory, be it of oligopolies, macroeconomic coordination fa ilure

models or models of individua l consumers' demand for goods such as popular restaurant

seats or theater tickets (Becker, 1990), is an interaction structure characterized by s imulta-

neous play rather than random pairing, anonymous or otherwise. In addition, agents react to

some average of other agents ' behaviour in these models. Hence, we argue that what is re le-

vant for many economic applica tions is a s imultaneous play interaction pattern with a payo¾

structure determined in part by the mean of the current s trategy dis tribution. However,

from a game theoretica l perspective the equilibrium selection mechanism in these games is

ra ther discomforting, s ince all the strict Nash equilibria of the underlying stage game can be

selected as part of the set of stochastica lly stable states by an appropriate speci¿ cation of the

best response mapping. Unless the best response mapping generates suÁ ciently asymmetric

piece-wise constant best responses in which case our model has strong predictive power, as

well as fast convergence to the predicted stochastica lly s table sta tes.

A natura l question that arises is how the best response mapping ought to be de¿ ned?

Robles postulates without any further argumenta tion that population averages, which lie

between two adjacent discre te stra tegy choices, should be transformed onto the nearest one of

these strategies. That is , if a value of the average is , say,n3xd the optimal individual stra tegy

is to play;, whereas it is to playn if the popula tion average isn3;�31 In pure coordination

games, this way of de¿ ning the best response mapping does not seem appealing. In this class

1Robles (1997) breaks ties such thatn3x( is mapped onto;.
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of games, individual payo¾ s are positive if the player's choice of s tra tegy equals the summary

statis tic, otherwise individual payo¾ s are zero. The stra tegies are also tota lly rankable in

the Pareto sense, such that coordinating on a higher value of the summary sta tis tic give the

players a strictly higher payo¾ than coordination on a lower one. We argue that if players

look at the ir payo¾ s, the natura l way of specifying the best response mapping is such that

any population average slightly above a discrete strategy, ought to lead a player to choose the

next higher strategy. This gives the player a higher payo¾ and involves no greater risk s ince

both actions are equally secured.2 These theoretica l arguments suggest that a symmetric

de¿ nition of the best response mapping in pure coordination games is questionable . However,

how individuals are like ly to perceive what is a best reply to a given sta tis tic is an empirica l

matter. After a ll, the perception of best responses is not a choice variable but intrins ic to

agents.

The paper is organised as follows. Section 2 serves for motivation and heuristics . It

presents the general idea by way of a simple example. Sections 3 and 4 turn the intuition

into formal ana lys is . Section 3 provides the general model, and section 4 states a general

poss ibility theorem saying that, in symmetric coordination games with s imultaneous play and

an average payo¾ structure, any strict Nash equilibrium can be selected as part of the set of

stochastica lly stable states by an appropriate de¿ nition of piece-wise constant best responses.

To illus trate the theorem, we ca lcula te numerically the set of s tochastica lly s table states for

a given error ra te and di¾ erent ways of de¿ ning piece-wise constant best responses. Section

5 considers the ra te of convergence and step-by-s tep evolution, while section 6 discusses the

2A secure action is an action whose lowest payo¾ is at leas t as large as the lowest payo¾ to any other
feasible action. (Van Huyck, Batta lio and Be il, 1991).
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results and suggests how the best response mapping could be de¿ ned for di¾ erent classes of

coordination games.

2 An Example

Consider a s ituation where a ¿ nite number of players, each having the same ¿ nite set of

s trategies, play a simultaneous coordination game. Individua l payo¾ s are determined by the

player's own action and a popula tion-wide average of the opponent players ' s trategy choices.3

For this class of games, we show that any strict Nash equilibrium of the underlying stage

game can be stochastica lly stable depending on how the best response mapping generates

piece-wise constant best reponses. This will be derived formally in the following sections but

before addressing the theoretica l issues, we sha ll illus trate the point by a s imple example .

Consider a symmetric pure coordination game with] ) � players and- ) x linearly

ordered stra tegies for each of them. Let$wE, D be the payo¾ to an individual playing

strategyE ; \d, 1, n, ;, xi when the mean of the popula tion's current s trategy pro¿ le equa ls

 . Since there are more average numbers than strategiesE, the best response mapping,

4w D, cannot be one-to-one. Speci¿ ca lly, suppose the ´leve l-set4́�dwED ) >E�y, ELd�yD

is a ha lf-open interva ll for some constanty ; >(, dD. In other words, we de¿ ne an integer-value

function which takes ; >E� y, EL d� yD� E, such that the best response is piece-wise

3The opponents are taken in a wide sense, i.e . the player himself ¿ gures among the opponents. If the
players knew they could alter the popula tion-wide average by their stra tegy choices , non of the results in
this paper would change in qua lita tive te rms.
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constant around a given integer-value ofE. Hence,

4w D ) 4wED ) E

wheneverE� y �  c EL d� y.

Introducing myopic best responses and mutation dynamics as in Kandori and Rob (1995),

we follow Young (1993) in de¿ ning the stochastica lly stable states of the game as those

states which are the roots of the least res is tant paths, where the res is tance in this case is the

minimum number of players who must mutate in order to move from a state where everyone

plays E to a state where everyone playsEI W) E. Denote the minimum resis tance of going

from E to EI by �EEI . It has been shown in Kandori and Rob (1995) that only adjacent

s tates need to be compared for obta ining the stochastica lly s table states in pure coordination

games. Thus, we have to compare�E,ELd and �ELd,E whereE ; \d, 333, ;i. Now assume the

integer-function de¿ nes pieces symmetrica lly; that is ,y ) d
1
. This is the case in Robles (1997)

and as we will demonstra te , the key to understand his equilibrium selection mechanism. Set

up the tree as below where the numbers above and below the arrows indicate the resis tances

of going upward and downward, respective ly.

Figure 1,y ) db1

1
1
��

�
x

2
1
��

�
n

3
n
��

�
1

4
x
��

�
1

5

It is eas ily seen that s taten is s tochastica lly s table since it is eas ier (i.e . requires fewer

mutations) to go fromd to 1 than the opposite way. Similarly for1 to n. It a lso involves fewer
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mutations to go fromx to ; than from; to x. The same applies for; to n. For comparison

assume instead thaty ) x
�
. This makes more numbers go up toE than fory ) d

1
. Setting

up a new tree, we observe that the stochastica lly stable sta tes aren and;.

Figure 2,y ) xb�
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This shows that just a small change in how the average is transformed onto a stra tegy

choice, s igni¿ cantly a lte rs the equilibrium selection. By changing the pieces s lightly in favour

of going upward, (by increas ingy ; >(, dD), the stochastica lly s table state(s) are biased

towards the Pareto eÁ cient outcome. The example suggests that by an even higher choice

of y ; >(, dD, players would coordinate on the Pareto eÁ cient equilibrium. Similar arguments

apply for tending towards the least eÁ cient equilibrium {d}. If the same game is played

with a random pairing interaction structure, Kandori and Rob (1995) show that the Pareto

eÁ cient equilibrium is stochastica lly s table . So clearly there is a di¾ erence between random

pairing and simultaneous play, but as the above example illustra tes, the di¾ erence seems to lie

in how each player's best response remains piece-wise constant in response to other players '

averaged strategy pro¿ le, and not so much in the di¾ erence in the interaction structure

per se. The way of de¿ ning piece-wise constant best responses determines the equilibrium

selection.
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3 The Model

Following Robles (1997), we consider a ¿ nite population[ of s ize ] composed of players

z ; [ U) \d, 1, 333, ]i. At each time0 ) d, 1, 333 these individuals play s imultaneously a

symmetric coordination game with linearly ordered strategiesE ; & U) \d, 1, 333,-i.4

Individual payo¾ ,$wE, wXDD, depends on own actionE ; & and the popula tion-wide

mean, wXDU) d
]

�
E;&

E'wplayers us ingED , which is observable .5 The (unobservable) sta te

X ) wXd, 333, X-D is a vector, whoseEth element,XE, represents the number of players us ing

strategyE ; &3 Thus, the state space of the system is chosen equal to-] , where- is the

strategy grid introduced above. We assume that$wE,ED c $wEI,EID wheneverE c EI,

and$wE,EID c $wEI,EID wheneverE W) EI.

The stage game described above, exhibits- strict Nash equilibria in which a ll players

choose the same strategy. In addition, the Nash equilibria are tota lly ranked in the Pareto

sense; when all players choose strategy 1 the least eÁ cient equilibrium is generated, and

Pareto optimum results when every player plays her highest s trategy-3

Like Kandori and Rob (1995) we assume that s trategy adjustment is not instantaneous

but is subject to some friction. Speci¿ ca lly, it is assumed that a t every0 ) d, 1, 333 each

player takes an independent draw from a Bernoulli tria l. With probabilitywd � 
D ; w(, dD

this draw produces the outcome ´do not learn´and the player stays with her strategy. With

the complementary probability
 the draw produces the outcome ´learn.́ In this case the

4Schelling (1973) introduced the simultaneous play model in economics. In biology the term ´playing the
¿ eld´is used to indicate inte raction with a whole population, (Maynard Smith, 1978).

5Robles (1997) considers games where individual payo¾ s depend on own action and convex combinations
of the order sta tis tics of the population's current s tra tegy con¿ guration. It should be noted though that the
results in our paper genera lize, in a qualita tive ly way, to a ll convex combinations of order statis tics as long
as all order s tatis tics have pos itive we ight.
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player is able to observe the average of the popula tion's current s trategy pro¿ le and switches

to a best response to the period0 average.6 We assume that she believes her opponents to

stay with the ir s trategies and that her choice has a negligible e¾ ect on the average. Hence,

her myopic best response is to match the current va lue of the mean.

We assume the existence of a partition of the real interval>d,- H into neighbourhoods

(vicinities) ~d, 333, ~- of d, 333,- respective ly such that the best response

4w D U) s��8s-$wN,  D

is constant on each~E, E ) d, 333,- . We shall there fore speak of piece-wise constant best

responses. For tractability we assume that

~E ) >d,- H � >E� y,EL d� yD

for somey ; >(, dD. In other words,

4w D ) 4wED ) E

wheneverE� y �  c EL d� y.

In addition to the myopic best-response dynamics, idiosyncratic behaviour is modelled

in the following way. For all0, each playerz ; [ is subject to some probability� k ( of

ḿutating´, in which case the player chooses any stra tegyE ; & in a purely arbitra rily

6It is without importance tha t the player observes the average and not the s tateX since the payo¾ to the
player depends on this average and not on how many players who are playing the di¾ erent strategies .
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manner with pos itive probability on eachE ; &. These events , which occur a fter the

best-response adjustments , are assumed to be independent across players and over time.

The composition of myopic best responses and mutations generates a discrete-time Markov-

process over the ¿ nite state spaceC, whose trans ition matrix is denotedh w�D ) w�XXIw�DD3

An element�XXIw�D represents the trans ition probability of moving to sta teXI at time 0 L d

conditional on be ing in sta teX at time 0. The ḿutation-free´dynamics itse lf corresponds

to h w(D.

The presence of mutations implies that every transition has positive probability. It is a

standard result tha t such Markov cha ins have a unique stationary probability distribution.

Let  w�D denote the unique invariant dis tribution ofh w�D for each � k (. The a im is to

characterize the limit

 	 U) j$8
��(

 w�D.

Based upon arguments in Fre idlin and Wentze ll (1984), Foster and Young (1990) have shown

that this limit exis ts and they called it the stochastica lly s table dis tribution. Call the support

of this limit dis tribution the set of s tochastica lly s table states and denote it�.

As a ¿ rst s tep towards computing the set of s tochastica lly s table sta tes we will identify

the set of the recurrent classes underh w(D. Denote this set� and le t�E be the sta te where

all players play strategyE.

Proposition 1 Using the arithmetic mean as a summary statis tic, the set of recurrent

classes in the unperturbed game is� ) \\�di, \�1i, 333, \�-ii for any integer-va lue func-

tion {NQy U b � ., de¿ ned by{NQy w�D U) {�Qy ) F whenever� ; >F � y, F L d � yD, F being
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an integer andy ; >(, dD3

Proof. If X ) �E then  ) E3 Therefore4wED ) E, irrespective ly of{NQy , y ; >(, dD.

Hence,�E ; �3 If XI W) �E but { wXIDQy ) E, then there are individuals who do not play a

best response to the current s ta teXI. Let a ll those players revise the ir s trategy choices. S ince

they will a ll change the ir s trategy toE, �E is reached in one step. Combined with the fact

that �E is an absorbing set this implies thatXI is a trans ient s tate and there foreXI b; �3

In order to determine 	, we need to know the rela tive s ize of the transition probabilities ,

�XXIw�D, that are converging to zero. S ince mutations are independent across players and

over time, the e lements ofh w�D are polynomia ls in�. In fact, the leading terms of�XXIw�D

have the form��wX,X
ID, where �wX, XID is the number of muta tions needed to move fromX to

XI. Hence, the number of muta tions corresponds to the order (in�) of the corresponding

transition probability. The stochastica lly s table sta tes are precisely those sta tes which can

be reached from any other state with the fewest number of mutations. In addition, s ince

 w(D is the limit dis tribution ofh w(D, it puts zero probability on every trans ient s ta te. We

may therefore restrict attention to the recurrent s ta tes to determine the set of s tochastica lly

s table states,�.

We now cons ider moving between two dis tinct recurrent sta tes�E and �EI , E W) EI,

�E, �EI ;�. For each pair of dis tinct recurrent s tates�E and �EI , E W) EI, an mmI-

path is a sequence of states� ) wXd, X1, 333, XRD which begins in�E and ends in�EI for

E W) EI. The res is tance of this path,�w�D, is the sum of the res is tances of its edges, that is

�w�D )
�R�d

>)d �wX
d, X>LdD where �wX>, X>LdD ; ]( � \ i is the number of mutations required

to move from stateX> to s tateX>Ld. Let �EEI be the least res is tance over a llEEI-paths�.
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In fact,

�EEI ) 8$t�UXd)�E,XR)�EI
�w�D3

A tree rooted at vertexEI (an �EI-tree), is a set of- � d directed edges, each for one

recurrent state, such that from every vertex di¾ erent fromEI, there is a unique directed

path in the tree toEI. The weight on the directed edgeE� EI is �EEI . The res is tance of a

rooted tree,x , is the sum of the res is tances�EEI on the- � d edges that composes it. Let

x w�EID be the set of�EI�trees. Following Young (1993), we de¿ ne the stochastic potentia l

of the recurrent s tate�EI by

�EI ) 8$tx;x w�EID

3
w�E,�EII D;x

�EEII

We now state the theorem for determining the stochastica lly s table sta tes (Young, 1993,

Theorem 4).

Theorem 2 The stochastica lly s table states,�E ; �, are exactly the state(s) with minimum

stochastic potentia l.

4 Equilibrium Selection

In this section we characterize the set of s tochastica lly stable states for the average payo¾

games described in section 3. Since the stochastic potentia l of�E ; � is de¿ ned to be the

minimum resistance over all trees rooted atE, s tandard tree constructions determine which

�E has the lowest s tochastic potentia l.
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When a playerz ; [ learns, her myopic best response is to match the integer-discretised

mean of the popula tion's current s tra tegy pro¿ le. Hence, to assess the like lihood of a move

from the sta te�E to �EI , we need to ¿ nd the minimum number of mutations required to

change the average fromE to EI. Since large jumps in an individua l s trategy change the

average more then small jumps, having players mutate to extreme stra tegies is often the ¿ rst

s tep along a minimum resis tance path. Ifd � E c EI c _ � -, then evidently there are

more strategies aboveE than EI. This means that one mutation to_ has a larger impact

on the average when the sta te is�E, than when the sta te is�EI. Therefore, the number of

mutations needed to destabilize equilibrium�E upwards must be less than or equal to the

number of mutations needed to destabilize equilibrium�EI in the same direction. A s imilar

argument applies to the number of muta tions needed to make the trans ition from a higher

to a lower sta te.7 Furthermore, a s light modi¿ cation of Proposition 3.2 in Robles (1997),

a llowing for a general speci¿ cation of piece-wise constant best responses, implies that to ¿ nd

the minimum res is tance path from�E we only need to consider adjacent recurrent states,

i.e . �E�d and �ELd. There fore, to ¿ nd the res is tance for the transition�E � �ELd, we need

to ¿ nd the number of players, de¿ ned as�E,ELd, who must muta te to- such that the best

reply for anE-player, who learns, is to play a strategy� ELd3 Hence,�E,ELd must satis fy

�E,ELd

]
- L w]��E,ELdD

]
E � E L d � y. Now, de¿ ne�E,ELd as the minimum number of

players who must play- for the above express ion to be satis¿ ed. Clearly�E,ELd depends

on y. In fact,�E,ELdwyD U) 8$t
+
�E,ELd U �E,ELd �

wd�yD]

-�E

�
. S imilarly, for the trans ition

�ELd � �E,we need to ¿ nd the minimum number of players who must mutate tod in order

for an wELdD-player's best response to be to play a strategy� E, assuming thewELdD-player

7This is what we sta te formally in Lemma 8.
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rece ives a learning draw. This is de¿ ned as�ELd,EwyD U) 8$t
\
�ELd,E U �ELd,E k y]

E

�
3

For comple teness set�-,-Ld ) �d,( ) 38

The following proposition yie lds a s imple characteriza tion of the res is tance between two

states in�.

Proposition 3 �E,ELdwyD ) �E,ELdwyD and �ELd,EwyD ) �ELd,EwyD3

Proof. Appendix.

The next proposition sta tes the conditions for�E to be supported by the stochastica lly

s table states. It asserts that�E is a (part of) the stochastica lly stable states if and only

if more mutations are required to move the sta te from�E to �E�d and from �E to �ELd

than the other way around. In other words, each inward res is tance must be less than the

corresponding outward one.

Proposition 4 �E ; � i¾ �E�d,EwyD � �E,E�dwyD and �ELd,EwyD � �E,ELdwyD3

Proof. The proof follows with a s light modi¿ cation from Robles (1997, Proposition 3.2).

From the de¿ nitions of�E,ELdwyD and�ELd,EwyD it follows that the res is tance between

two states in� depends on how best responses are piece-wise constant. The next proposition

gives necessary and suÁ cient conditions for the lowest and highest stra tegies, respective ly,

to be stochastica lly s table.

8One potentia l problem is that it might be poss ible for�E,ELd players who muta te to- , to ra ise the
mean above the new stateEL d, but not exactly toEL d3 Lemma 3.1 in Robles (1997) shows that in tha t
case players can mutate to a strategy_ c - and reachEL d and that�E,ELd� d players is not suÁ cient
to increase the mean toEL d.
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Proposition 5 Lety ; >(, dD. i) If y ;
J
(, ]L-�d

]-

o
then �d ; �, ii) if y ;

J
d� ]L-�d

]-
, d
i

then �- ; �3 If in addition ] k - � d and iii) y ;
J
(, ]�-Ld

]-

o
then �d ; � uniquely, or if

iv) y ;
J
d� ]�-Ld

]-
, d
i

then �- ; � unique ly.

Proof. A necessary and suÁ cient condition for�- b; � is that the number of mutations

required to move the state from�- to �-�d is s trictly less than the number of muta tions

required to move the sta te the opposite way. This follows from Proposition 4. In fact, us ing

Proposition 3, and the de¿ nitions of�-�d,-wyD and�-,-�dwyD, a necessary and suÁ cient

condition for�- b; � is y]

-�d
Ld c wd�yD]

-�w-�dD
. From this express ion it is easy to establish ii).

The corresponding argument concerning i) is essentia lly identica l.

To prove uniqueness, a ll that is required is that�-�d,- c �-,-�d for �- to be unique,

and�1,d c �d,1 for �d to be unique. Then condition iii) and iv) follows from the de¿ nition

of � and�.

In Robles (1997), where the integer-va lue function is de¿ ned symmetrica lly, i.e .,y ) d
1
, the

stochastica lly stable states are bounded away from the extreme strategies for most parameter

con¿ gurations. The following corolla ry gives conditions for this to happen.

Corolla ry 6 Let] � x, - � n and y ) d
1
3 Then i) �d b; �, ii) �- b; �3

Proof. The proof follows from Proposition 5.

We are now ready to state the main theorem, saying that in symmetric coordination

games with s imultaneous play and an average payo¾ structure , a ll the strict Nash equilibria

of the underlying stage game can be decleared stochastica lly stable by an appropriate choice

of how the popula tion-wide average is transformed into a discre te strategy choice.
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Theorem 7 If] � x and- � n, any of the recurrent s tates�E ; � for E ; & can be

selected as stochastica lly s table by appropriate choice ofy ; >(, dD.

Before we prove the theorem, we need to prove that the number of mutations needed to

destabilize equilibrium�E upwards (downwards) is less (larger) than or equa l to the number

of mutations needed to destabilize equilibrium�ELd in the same direction.

Lemma 8 Ifd � E c -, then �E,ELdwyD � �ELd,EL1wyD and �EL1,ELdwyD � �ELd,EwyD3

Proof. From Proposition 3 we know that the resistances can be expressed in terms of� 's

and� 's . Then, we have�E,ELdwyD ) 8$t
+
�E,ELd U �E,ELd �

wd�yD]

-�E

�
and

�ELd,EL1wyD ) 8$t
+
�ELd,EL1 U �ELd,EL1 �

wd�yD]

-�wELdD

�
3 Hence�E,ELdwyD � �ELd,EL1wyD3

Similarly, �EL1,ELdwyD ) 8$t
\
�EL1,ELd U �EL1,ELd k

y]
ELd

�
and

�ELd,EwyD ) 8$t
\
�ELd,E U �ELd,E k y]

E

�
3 Therefore,�EL1,ELdwyD � �ELd,EwyD, and the

Lemma is established.

Proof. (Theorem 7). From Proposition 5 we know that we can select�d as a stochastica lly

s table state by choosingy ;
J
(, ]L-�d

]-

o
. Call the upper bound of this interva lyd3 kFrom the

same proposition,�- is s tochastica lly s table wheny ;
J
d� ]L-�d

]-
, d
i
3 Denote the lower

bound of this intervaly- . It is easy to verify thatyd c y- when] � x, - � n.

Observe that for a llE U d � E c - , �E,ELdwyD is non-increas ing iny ; >(, dD3 This

follows directly from the de¿ nition of�E,ELdwyD. In fact, for a giveny ) y, a small increase

in y implies a change in�E,ELdwyD ; \�d, (i, for d � E c - . Similarly, a small increase in

y implies a change in�ELd,EwyD ; \(, di, for d c E �- .
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To se lect any�E ; � choosey ; >(, ydH. If E ) d, then �d ; �3 If E k d, then choosey

s lightly aboveyd. As noted above, this increase iny implies a change in�E,ELd ; \�d, (i and

in �ELd,E ; \(, di, and from Lemma 8 it follows that the changes in the resistances�E,ELd

(�ELd,E) are monotonically non-decreas ing (non-increasing). If the increase iny changes the

resis tance such that the conditions given in Proposition 4 are satis¿ ed, then�E ; �. If

not, then continue to increasey until they are . IfE ) - , then we have to increasey until

y- � y c d3 Note thaty- c d for a ll ] � x, - � n3 In fact, j$8
-� 

y- ) ]�d
]

c d and

j$8
]� 

y- ) -�d
-

c d3 If E c- , it follows from Lemma 8 that the conditions will be satis¿ ed

for y c y- and the proof is comple te .

To illus trate how the probability dis tribution accumulates on the di¾ erent Nash equilibria

of the underlying stage game, we can solve for the stationary dis tribution as a function of

the discretisation parametery and the mutation ra te� directly. The results for� ) (3(d

and se lected va lues ofy in a game with] ) x players each having- ) n stra tegies are

summarized in Table 4.1. (We expla in how probabilities are calcula ted in the appendix.)

Table 4.1. Long-run probabilities
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�d �1 �n

y ) �
d(

� � 3�E�

y ) �
d(

� 3;MM 3;��

y ) x
d(

� 3�Ex �

y ) n
d(

3;�� 3;MM �

y ) d
d(

3��E � �

A �́´indicates less than3(x probability.

5 Rate of Convergence

In this section we argue that the way best responses to the summary sta tis tic remain piece-

wise constant has important consequences for the expected waiting time required to reach

the stochastica lly s table s ta tes. Speci¿ cally it is argued that if the best response mapping

is suÁ ciently asymmetric, i,e .y is close to zero or one, then the expected wait to reach the

stochastica lly s table states is re lative ly short, even if the mutation rate is small. Moreover,

in the limit when y approaches zero or one, the expected wait remains of the same order

as the mutation rate even when the popula tion size grows to in¿ nity. Hence, convergence

is fast a lso in the second sense discussed in Ellison (1993, pp. 1060-1063). This is due to

the fact that the system can easily escape the basin of attraction of each Nash equilibrium

except the unique stochastica lle s table sta te�d or �- .

The observation that evolution is more rapid when it may proceed via a series of small
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steps between intermediate recurrent states is analysed in Ellison (1996). Ellison gives the

following biologica l example to provide intuition: Consider two di¾ erent environments in

which three ma jor genetic muta tions are necessary to produce the more ¿ t animalj from

animal?. In the ¿ rst environment each s ingle genetic muta tion on its own, provides an

increase in ¿ tness that a llows the mutants to take over the population. In the second, a ll

three genetic mutations must occur s imultaneously to create the animal with a higher ¿ tness

than?. If mutations are rare phenomena, the expected waiting time to see animalj being

created is much larger in the latte r case. Hence, the large cumulative change from? to j

seems more plaus ible when gradua l changes are poss ible.

As the ana lys is in section 4 shows, the minimum resis tance paths in coordination games

with s imultaneous play are constructed between adjacent recurrent classes. Therefore , evolu-

tionary changes occur step-by-step. As a result, the expected wait to reach the stochastica lly

s table state from any given state in Ellison's step-by-s tep model and in the present one is

the same.9

To show that convergence is fast when the best response mapping is suÁ ciently asym-

metric we follow Ellison (1996) and de¿ ne8s-X;CP wX,�, �D as the maximal expected wait

until a s ta te belonging to the set� is ¿ rst reached given that play begins in sta teX ; C

when the mutation rate is� k (. If the expected wait is small, convergence is fast and�

can be regarded as a good prediction of play, even in the medium run.

From the de¿ nition of res is tance, i.e . from Proposition 4, it follows that�d or �- can be

reached via a chain of s ingle mutations wheny is close to zero or one. More importantly, this

9Kaarbxe (1998) shows that it is easy to construct examples of s imultanous play coordination games
where Ellison's analys is is not applicable .
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result holds also when the popula tion size approaches in¿ nity. As a result, the convergence

rate is independent of the population size ,] , and convergence is fast a lso in the second

sense discussed in Ellison (1993).

Proposition 9 If i)y ; >(, d
]
H or ii) y ; >d � d

]
, dD, 8s-X;CP wX,�, �D is of order��d as

�� (3 Moreover, in the limit wheny approaches zero or one, this result holds true when the

population size subsequently grows to in¿ nity.

Proof. The proof follows from the de¿ nition of the res is tances. If�-�d,- ) d we know

that the resistance of going upward from any other state is also one. This follows from the

fact that the� 's are non-decreas ing and is proven formally in Lemma 8. Hence�- ; � is

reached with just one mutation. Correspondingly for case i).

6 Discuss ion

Theorem 7 demonstrates that in coordination games with s imultaneous play and payo¾ s

determined by ´average strategies´, any of the strict Nash equilibria of the stage game

can be stochastica lly s table . Which equilibria depend sole ly on the way the best response

mapping transforms the average of other players ' s trategy pro¿ le onto a discrete strategy.

This implies that when di¾ erent game structures are compared, one should be careful in

ascribing di¾ erences in the equilibrium selection to the game as such. What is crucia l is

how best responses remain piece-wise constant. If for instance, piece-wise constant best

responses are de¿ ned symmetrica lly the stochastica lly s table sta tes are bounded away from

the extreme strategies. This leads Robles (1997) to conclude that there is a stark contrast
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in equilibrium selection between coordination games with random pairing and games with

a s imultaneous play interaction structure . He reaches this conclus ion because Kandori and

Rob (1995) show that the stochastica lly s table sta te is Pareto eÁ cient in pure coordination

games where players are randomly matched in pairs . However, this is not in contrast to

s imultaneous play, but mere ly a result of the speci¿ c way Robles de¿ nes piece-wise constant

best responses. It should be noted, though, that as the number of players increases,y- ,

i.e . the lower bound ony ; >(, dD that makes�- ; �, goes to one. This indicates that

for a given de¿ nition of piece-wise constant best responses, it becomes increas ingly diÁ cult

to coordinate on eÁ cient outcomes when the number of players is large. This result ¿ ts

intuition as well as much research (see e.g. KMR, Van Huyck, Batta lio and Beil (1990,

1991) and Crawford (1995)).

A natura l question arises though. Namely, how are individuals most like ly to perce ive

y ; >(, dD, and hence their best responses? Note that this question is not tantamount to

asking how an experimenter would de¿ ne the best response mapping. He can choose any

integer value function to his liking (and hence determine payo¾ s), but that does not imply

a speci¿ c behaviour of players. Their best replies depend on their perception of what is a

best response to a given statis tic. Unfortunate ly, we know of no experiments like the ones in

Van Huyck, Batta lio and Beil (1991) where the payo¾ s (hence best replies) are determined

by some averages, that could shed light on this issue. Intuitive ly, however, it is diÁ cult to

understand why the best response mapping should be de¿ ned and percieved as symmetric in

pure coordination games. In this class of games, individual payo¾ s are positive if the player

match the current average, otherwise individua l payo¾ s are zero. Hence, a ll actions are

equally secured (see footnote1). The strategies are Pareto ranked, such that coordinating
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on a higher value of the summary statis tic gives the players a strictly higher payo¾ than

coordinating on a lower one. Thus why should a population-wide average of say,;3;M, induce

a player to play strategy; ins tead ofx? In particular s ince playingx gives the player a higher

payo¾ and in addition involves no greater risk than playing;. Though the experiments in

Van Huyck et a l (1991) do not cover this case, some indication in favour of this argument can

be found in the experiments concerning the median as the payo¾ relevant summary statis tic.

In one treatment they considered a case where a ll disequilibria outcomes give a payo¾ of zero

(the period game�). This resembles our pure coordination game with an average payo¾

structure if the median is interpreted as a proxy for the average. In that experiment, they

¿ nd that everyone playing their highest s tra tegy is like ly to be the equilibrium outcome.

Thus agents may perceivey as close to one even though an experimenter has de¿ ned it

di¾ erently.

It is a lso worth pointing out that pure coordination games are potentia l games, and

Monderer and Shapley (1996) show that for potentia l games with an average payo¾ structure,

the unique stra tegy pro¿ le that maximises the potentia l, is the Pareto eÁ cient one. This too,

clearly lends support to our cla im that for an experimenter an asymmetric way of de¿ ning

the best response mapping is not something that should be dismissed. In fact, it actually

accords with theoretica l results as well as empirica l equilibrium observations.

For more genera l coordination games we also expect that if the payo¾ s the players get

when missing the summary statis tic di¾ er for di¾ erent s trategies, both de¿ ning and perce iv-

ing the best response mapping symmetrica lly is highly unlike ly to be a focal point.
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Appendix

Proof of Proposition 3. We shall show that the transitionE� ELd for d � E c EL

d � - can happen after�E,ELdwyDmutations and not fewer. The corresponding argument

concerning any trans itionEL d � E for d � E c E L d � - is essentia lly identica l and

omitted.

Firs t, note that a fter�E,ELdwyD mutations to-, the best response for anE-player, who

learns, is to play stra tegyELd.(This follows trivia lly from the de¿ nition of�E,ELdwyD)3 Call

the sta te that results if, s tarting at�E, �E,ELdwyD players mutate to-, for Xd. Suppose

{ wXdDQy ) EL d3 Since it is assumed that a t every0 ) d, 1, 333 each player enjoys a strictly

pos itive probability of learning, let a ll players revise their stra tegy choices. From the best-

response dynamics it follows that a ll players adjust to strategyE L d and �ELd is reached

with �E,ELdwyD mutations. If{ wXdDQ k EL d, then there exists mutations to_ c - such

that { wXIDQ ) E L d3 (See footnote 9). HereXI is the sta te that results if, s tarting at�E,

�E,ELdwyD players mutate to_. Again let a ll players learn. Since4w wXIDD ) ELd, they a ll

adjust to�ELd3 Hence,�E is reached with�E,ELdwyD mutations.

We now show that�E,ELdwyD�d mutations are not suÁ cient to reach�ELd3 Let the sta te

which results a fter�E,ELdwyD� dmutations beX1. From the de¿ nition of�E,ELdwyD, it fol-

lows that the best response for anE-player, who learns, is to playE3 Now, le t an--player

rece ive the learning draw. Her best response is by de¿ nition to playE as well. Call the

resulting state after the--player has played her best response forXn3 Since  wXnD c  wX1D,

�ELd is not reachable from�E with �E,ELdwyD� d mutations.
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Calculation of the Stationary Dis tribution. The composition of myopic best responses

and mutations generates an irreducible and aperiodic Markov chain over the ¿ nite state space

C. We now show how to compute the unique invariant dis tribution, w�D, � k (, for the games

described in this paper.

To s implify the computa tion burden, we assume that each playerz ; [ enjoys the

probability of revis ing her stra tegy choice with probability one, i.e .
 ) d. We refer to this

as the determinis tic best-response dynamics. It is called determinis tic s ince every player

switches to a best reply in every period.10 Therefore, from any initia l s tateX, the determin-

is tic best-response dynamics implies a trans ition to the state�E, whereE ; & is the best

reply to wXD. This transition happens before the mutation dynamics. The probability of the

one-period trans itionX ) w7d, 333, 7E, 333, 7-D � XI ) w7Id, 333, 7
I
E, 333, 7

I
-D, is then the probability

of the transition�E � XI via the mutation dynamics, where4w wXDD ) E.

When a player mutates, we simply assume she chooses any stra tegyE ; & with a

time-invariant positive probability which is dis tributed uniformly over all poss ible choices.

Hence,

�XXIw�D )
3

(�7Ew(D�7E
7dw�EDL333L7- w�ED)�wED)7E�7Ew(D

7Ew(DL
�

EI

7Ew�EI D)7IE

w
7E

7Ew(D

Ww
�wED

7dw�wEDD, 333, 7-w�wEDD

W
wd� �D7Ew(D

p �

-

Q�wED

where, 7Ew(D is the number of players playing strategy7 who do not mutate,�wED is the

10The assumption is not crucia l for the point emphas ized in Table 4.1. First, each player's probability
of revis ing her s tra tegy choice can be chosen arbitrarily close to 1. Secondly, the least res is tance paths are
always constructed with transitions between adjacent recurrent sets . Hence, assuming all players learn every
period does not change the number of muta tions in the least resistance paths .
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number of players who playE and mutate,
D

7E
7Ew(D

i
is the binomial coeÁ cient

D
7E�

w7E�7Ew(DD�7E�

i

and
D

�wED

7dw�wEDD,333,7- w�wEDD

i
is the multinomial coeÁ cient

D
�wED�

7dw�wEDD�3337- w�wEDD�

i
.

To illus tra te the above formula, le t- ) n and] ) x3 In this game there are 21 sta tes.

Now assumey ) d
1
, X ) wd, ;, (D and XI ) wd, 1, 1D3 In s tateX,  ) �

x
and { wXDQ d

1

) 13 Hence,

4w D ) 1, and�1 is reached via the determinis tic best-response dynamics. For a given va lue

of �, the probability of the transitionX� XI is then the probability of the trans ition�1 � XI

by the mutation dynamics. Hence,

�XXIw�D )

w
x

1

Ww
n

d, (, 1

W
wd� �D1

p�
n

Qn

L

w
x

d

Ww
;

d, d, 1

W
wd� �D

p�
n

Q;

L

w
x

d, 1, 1

Wp�
n

Qx

) n(wd� �D1
p�
n

Qn

L E(wd� �D
p�
n

Q;

L n(
p�
n

Qx

.

When the trans ition matrix,h w�D, is calculated, the stationary dis tribution w�D is found

by power itera tion onh w�D until it converges. (See e.g. Stewart (1994) for a systematic and

deta iled treatment of the numerical solution of Markov chains.)
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