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Abstract

In many contests in economic and political life, both all-pay and winner-pay expenditures

matter for winning. This paper studies such hybrid contests under symmetry and asymme-

try. The symmetric model is very general but still yields a simple closed-form solution. More

contestants tend to lead to substitution toward winner-pay investments, and total expen-

ditures are always lower than in the corresponding all-pay contest. With a biased decision

process and two contestants, the favored contestant wins with a higher likelihood, chooses

less winner-pay investments, and contributes more to total expenditures. An endogenous bias

that maximizes total expenditures disfavors the high-valuation contestant but still makes her

the more likely one to win.
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1 Introduction

As defined by the dictionary, a contest is “a struggle for superiority or victory between rivals”

(Soukhanov, 1992). Situations that involve such contests are commonplace in economic and

political life. Examples include marketing, advertising, litigation, relative reward schemes in

firms, beauty contests between firms, rent-seeking for rents allocated by a public regulator,

political competition, patent races, sports, military combat, and war.1 Indeed, there exists a

vast theoretical literature that studies contests by modeling them as a non-cooperative game.2

A common approach is to assume that each one of a number of contestants chooses a one-

dimensional effort level. Through a postulated contest success function (CSF), the effort levels

jointly determine the probability that a given contestant wins the contest. The winner is awarded

a prize. Within this framework, scholars have studied questions about, for example, how much

effort an individual contestant exerts, how the sum of effort costs relates to the value of the prize

(i.e., the dissipation rate), and how individual and total effort costs are affected by an increase

in the number of contestants and of changes in the design of the contest (e.g., the timing of the

game or alternative prize structures).

One feature of the above, standard, framework is that each contestant’s effort is modeled as

an all-pay investment : The investment cost is incurred regardless of whether the contestant wins

or not. For example, in the competitive bidding to host the Olympic games, candidate cities

spend money upfront, with the goal of bribing or otherwise persuading members of the Inter-

national Olympic Committee; in case a city is not awarded the Games, the money is forfeited.

Alternatively, we could think of each contestant’s effort as a winner-pay investment, meaning

that it is contingent on actually winning the contest. For example, a candidate city may commit

to build new stadia and other infrastructure and to invest in ambitious safety arrangements if

being awarded the Games; or the candidate city offers bribes that are contingent on winning.

In many situations, including the bidding for the Olympics, the contestants can arguably

make both all-pay and winner-pay investments. Moreover, the extent to which they choose to

use each one of these instruments to exert influence is likely to depend on the contest technology

and the nature of the strategic environment in which the contestants interact.3 In this paper

I develop a framework for hybrid all-pay and winner-pay contests where contestants can make

both kinds of investment. I then use this framework to study, both in symmetric and asymmetric

environments, the incentives of contestants to invest in each of the two influence channels;

how the contestants optimally mix between all-pay and winner-pay investments; and how the

equilibrium investment levels and the dissipation rate depend on the number of contestants, the

1This list is borrowed from Konrad (2009, p. 1).
2For surveys of this literature, see Nitzan (1994), Konrad (2009), and Corchón and Serena (2016). For a recent

survey of the experimental literature, including a useful introduction to some important modeling approaches, see
Dechenaux, Kovenock, and Sheremeta (2015).

3Other examples of contests where substitution between all-pay and winner-pay investments is possible include
(i) the competition for a government contract or a grant and (ii) a political election (these example are discussed
also by Melkoyan, 2013). In a contest for a government contract or a grant, the contestants can, on the one
hand, spend time and effort preparing their proposal and, on the other hand, commit to actions to be taken if
being awarded the contract/grant (like providing ambitious and costly customer service). In a political contest,
a candidate can increase her chances of being elected both by making campaign expenditures and by making
electoral promises (the latter are costly if they deviate from the candidate’s ideal policy). While the campaign
expenditures are paid upfront, the cost of fulfilling campaign promises are incurred only if the candidate wins the
election.
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contest technology, and other aspects of the environment. Finally, I ask what bias in the CSF

should be chosen if the contestants have different valuations and the objective is to maximize

total equilibrium expenditures.

I set up the formal model in Section 2. In this model there are n contestants who, simultane-

ously with each other, commit to an all-pay investment level and a winner-pay investment level.

These investments jointly generate each contestant’s score, according to a production function.

The scores of the n contestants then, through a CSF, determine each contestant’s probability

of winning. The economically important assumptions that I make about the score production

function is that it is homogeneous and strictly quasiconcave. The CSF is assumed to be strictly

concave in the own score.

In Section 3 I first provide sufficient conditions for existence of a pure strategy equilibrium

of the hybrid contest (Proposition 1). These conditions require that that the returns to scale

associated with the score production function are not too strong. Moreover, for equilibrium

existence to be guaranteed, it helps if the elasticity of substitution between the two kinds of

investment is not too large; however, in an example with a constant elasticity of substitution

(CES), I show that an equilibrium exists also for arbitrarily large values of that elasticity,

provided that winner-pay investments are sufficiently important in the score production function.

I further characterize the contestants’ equilibrium behavior (Proposition 2). In Section 4 I then

study a symmetric version of the model, where the CSF is assumed to be homogeneous. In spite

of the fact that both the CSF and the production function are general, the model gives rise to a

closed-form solution and this solution is unique and quite simple (Proposition 3). The solution

is stated partly in terms of a function h, which is defined as the inverse of the marginal rate

of technical substitution between the two kinds of investment. In a symmetric equilibrium, the

argument of h is the number of contestants, n.

The comparative statics analysis for the symmetric model shows, among other things, that

if the score production function is such that it is relatively easy to substitute between the two

kinds of investment, then, as the number of contestants (n) increases, each contestant’s winner-

pay investment goes up and her all-pay investment goes down. The reason is that a larger

n implies a lower probability of winning, which effectively lowers the relative cost of winner-

pay investments. However, if it is sufficiently difficult to substitute between the two kinds of

investment, then the winner-pay and the all-pay investment levels move in the same direction—

which direction depends on parameter values—as n goes up (Proposition 4). Section 4 also

studies the total amount of expenditures in the symmetric model. It turns out that, for any

finite number of contestants, the hybrid contest always gives rise to a strictly smaller amount of

total expenditures than the corresponding all-pay contest (Proposition 5). The reason is that,

in a hybrid contest, winning the prize is worth less—namely, the gross valuation minus the

winner-pay investment. This creates a shift in a contestant’s best reply function: For any given

behavior of the rivals, she has an incentive to choose lower investment levels. This is true for all

contestants, and the result is an equilibrium with lower investment levels and expenditures.

The result that the hybrid contest yields a strictly smaller amount of total expenditures

holds also for an infinitely large number of contestants, as long as the limit of nh(n) as n→∞

is finite; if that limit is infinite, then the limit value of the total expenditures is the same in

the two models (Proposition 6). For a CES production function, the limit of nh(n) as n → ∞
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is finite if and only if σ ≥ 1, where σ is the elasticity of substitution. Intuitively, winner-pay

investments are less conducive to large expenditures than all-pay investments are; moreover, for

σ ≥ 1 it is relatively easy for the contestants to substitute away from all-pay investments to

winner-pay investments when the number of contestants goes up.

In Section 5 I study three asymmetric versions of the model, all with two contestants. I first

formulate a framework that encompasses all three models and prove a characterization result

as well as a sufficient condition for equilibrium uniqueness (Proposition 7). After that I turn to

the first one of the three more specific models: a contest in which the CSF is biased in favor

of one of the contestants. At an equilibrium of this contest, the contestant who wins with the

higher likelihood also (i) chooses a smaller winner-pay investment and (ii) contributes more to

the expected total amount of expenditures. Under the assumption that the asymmetry is small,

I show that the contestant who wins with the higher likelihood must be the one who is favored

by the CSF. What is the effect on the investment levels of an increase in the bias? There are,

depending on how easy it is to substitute, two possibilities. If the elasticity of substitution is

relatively high, then the favored contestant does less of winner-pay and more of all-pay invest-

ment, while her rival does the opposite; but if the elasticity of substitution is low enough, then

the favored contestant does less of both kinds of investment and her rival does more of both of

them (Proposition 8).

In the second asymmetric contest the contestants are assumed to have different valuations

for winning the prize. Among the results is that (for a small asymmetry) the contestant with

the higher valuation wins with the highest likelihood. In contrast to the model with a biased

decision process, here the contestant who wins with the higher likelihood does not necessarily

choose a smaller amount of winner-pay investments—this happens only when it is sufficiently

easy to substitute (Proposition 9).

In the third asymmetric contest there is both a possible bias in the CSF and different

valuations. Moreover, the bias (if any) is assumed to be chosen by a principal who wants to

maximize the expected total equilibrium expenditures. The final result of the paper states that

the optimal bias disfavors the high-valuation contestant but still makes her win with the highest

probability (Proposition 10). The reason why the high-valuation contestant is made to win with

the highest probability is that she is the more valuable contributor to the overall expenditures.

Thus, this contestant should be encouraged to use all-pay investments, as these are conducive

to high expenditures. This can be achieved by making her win probability high (for then all-pay

investments are relatively inexpensive).

1.1 Related Literature

Haan and Schoonbeek (2003) and Melkoyan (2013) study special cases of the present framework.

The former paper assumes a Cobb-Douglas production function (in addition, the exponents in

this function both equal unity) and a lottery CSF. It also derives results for an asymmetric

contest where the contestants differ from each other with respect to their valuations. Melkoyan

assumes a CES production function, but with the restriction that the elasticity of substitution

cannot be below unity; his CSF is of the Tullock (1980) form. Moreover, he studies only a

symmetric contest. The present analysis, in contrast, assumes a general production function
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and a general CSF (the essential assumptions are, for the former, strict quasi-concavity and

homogeneity and, for the latter, strict concavity in the own score and homogeneity). In the

symmetric version of the model, these more general assumptions still allow for a closed-form

solution, which is quite simple. In addition, the general analysis is actually simpler and more

tractable than the analysis of the models using a specific functional form. The more general

analysis is possible thanks to an alternative methodology. The idea is that—instead of simply

plugging in the score production function into the CSF and then take two first-order conditions

for each contestant—to derive a contestant’s best reply in two steps. First, I fix a contestant’s

score and solve for the optimal levels of all-pay and winner-pay investments that can produce

that score. In producer theory language, I compute two conditional factor demand functions

by solving a cost-minimization problem. Second, using the conditional factor demand functions

I can easily derive a contestant’s optimal score and thus also her best reply. One reason why

this approach is helpful is that, at the second step, each contestant has a single choice variable,

which makes it much easier to determine what conditions are required for equilibrium existence.

Indeed, an important contribution relative to Melkoyan’s (2013) analysis is to formulate a simple

sufficient condition for equilibrium existence, stated in terms of some key elasticities.4

Siegel (2010) formulates an interesting and quite general framework that accommodates both

all-pay and winner-pay (or, using his terminology, conditional and unconditional) investments.

However, each contestant’s investment is one-dimensional. The single investment level leads,

according to an exogenous rule, to costs that are incurred partly conditional, partly uncondi-

tional, on winning. For example, in a special case of his model, a constant fraction of the cost is

paid only if winning and the remaining fraction is always paid. This model feature means that

there cannot be any substitution from, say, all-pay investments to winner-pay investments when

the economic environment changes, which is an important aspect of the hybrid contest. Another

important model feature that distinguishes Siegel’s framework from the one in the present paper

is that, in his setting, a contestant who makes a strictly greater effort than all her rivals always

wins for sure, like in an all-pay auction: The CSF involves no uncertainty (except possibly when

there are ties).

Also related to the present analysis are papers that model contests with more than one

influence channel (or multi-dimensional efforts), although not in the form of all-pay and winner-

pay investments. These papers can be grouped into (at least) three categories. First there is

a literature on sabotage in contests, where contestants exert effort both to improve the own

performance and to sabotage the rivals’ performances. See, e.g., Konrad (2000), who uses a

Tullock CSF, and Chen (2003), who uses a rank-order tournament à la Lazear and Rosen (1981).

Second, some works study contest models of war and conflict where the contestants allocate their

4To check the second-order conditions in Melkoyan’s framework, using his analytical approach, is cumbersome,
and when Melkoyan does it he partly relies on numerical simulations. To get a sense of how cumbersome it is,
consider the following passage from Melkoyan (2013, p. 976): “[. . . ] one can demonstrate, after a series of tedious
algebraic manipulations, that a player’s payoff function is locally concave at the symmetric equilibrium candidate
in (7) if and only if [large mathematical expression]. One can verify that the left-hand side of the above inequality
is neither positive for all parameter values nor negative. An examination of this expression also reveals that the
set of parameter values for which the determinant of the Hessian matrix is positive has a strictly positive measure.
Numerical simulations indicate that this inequality is violated only for ‘extreme values’ of the parameters [. . . ].
In addition to verifying the local second-order conditions, I have used numerical simulations to verify that the
global second-order conditions are satisfied under a wide range of scenarios.”
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endowments between two activities: production and appropriation. Early contributions to this

strand of literature are Hirshleifer (1991) and Skaperdas and Syropoulos (1997). Third, a number

of papers extend the standard all-pay contest by allowing for two or more “arms” of the influence

activities, although all arms are of the all-pay nature. A recent example of this is Arbatskaya and

Mialon (2010), who assume that each contestant chooses a whole vector of all-pay effort levels

and that the linear effort costs may differ across arms and contestants. The contestants’ effort

levels jointly determine the win probabilities thorough a Tullock CSF where the effects of the

different arms are aggregated by a Cobb-Douglas function. Arbatskaya and Mialon also, within

their setting, provide an axiomatic justification for this Tullock-Cobb-Douglas functional form.

Other contributions within this third category include Clark and Konrad (2007), who study a

two-player Tullock contest with multi-dimensional efforts and where a contestant must win in a

certain number of these dimensions in order to be awarded the prize.

Finally, a few papers have studied models in which the contestants can make only winner-pay

investments. Yates (2011) formulates and solves a fairly general such model with two contestants.

He considers both a symmetric and an asymmetric setting and he also presents some results for

an example with private information about each contestant’s valuation. Wärneryd (2000) models

a court case in which two parties can either represent themselves or hire lawyers. In the latter

case, each contestant needs to pay a lawyer’s fee only if winning the case; this part of the game is

thus modeled as a winner-pay contest. The main point of Wärneryd’s paper is that both parties

prefer compulsory representation by lawyers, as this helps to reduce expenditures. This finding

is related to the result in the present paper that the hybrid contest (and thus also a pure winner-

pay contest) give rise to less total expenditures than the all-pay contest. Matros and Armanios

(2009) study an n-player all-pay Tullock contest with reimbursements. That is, the authors

assume that after a win or a loss, respectively, a certain exogenous fraction of the expenditures

that have been paid upfront are reimbursed to the contestant. For particular parameter values,

this contest simplifies to a winner-pay contest (and for other particular parameter values, it

amounts to special case of Siegel (2010), discussed above).

2 A Model of a Hybrid Contest

Consider the following model of a hybrid contest, that is, a contest in which the outcome is

determined by both all-pay and winner-pay investments. There are n ≥ 2 economic agents, or

contestants, who try to win an indivisible prize. Contestant i’s valuation of the prize equals

vi > 0 and her probability of winning is determined by the contest success function (CSF)

pi (s) , with
n∑

j=1

pj(s) = 1, (1)

where s = (s1, s2, . . . , sn) and si ≥ 0 is contestant i’s score. The function pi is twice continuously

differentiable. Moreover, it is strictly increasing and strictly concave in si, and it is strictly

decreasing in sj for all j 6= i. In addition, if si = 0 then pi (s) = 0.

5



Name f(x, y) h(m) σ(m) η(m)

Leontief min
{
x
α ,
y
β

}
n.a. 0 n.a.

Linear technology αx+ βy n.a. ∞ n.a.
Cobb-Douglas xαyβ α

βm 1 α
α+β

CES
[
αx

σ−1
σ + (1− α)y

σ−1
σ

] tσ
σ−1

[
α

(1−α)m

]σ
σ tασm1−σ

ασm1−σ+(1−α)σ

Table 1: Examples of production functions. More examples and relevant references can be found

in Nadiri (1982).

Contestant i’s score si is determined by the following production function:

si = f (xi, yi) .

The variables xi ≥ 0 and yi ≥ 0 are both chosen by contestant i. The first one, xi, is the all-pay

investment; this is the amount of money that the contestant pays regardless of whether she wins

the prize or not. The second variable, yi, is the winner-pay investment: the amount contestant i

pays if and only if she wins the prize. The production function f (xi, yi) is strictly quasiconcave,

three times continuously differentiable, and strictly increasing in each of its arguments. Moreover,

the function satisfies f (0, 0) = 0 and the following Inada conditions:5 limxi→0 f1 (xi, yi) =∞ for

all yi > 0, and limyi→0 f2 (xi, yi) =∞ for all xi > 0. Finally, it is homogeneous of degree t > 0;

formally, for all k > 0, f (kxi, kyi) = ktf (xi, yi).

The contestants are risk neutral, which means that contestant i maximizes the following

expected payoff:

πi = (vi − yi) pi (s)− xi, (2)

subject to si = f (xi, yi). The contestants choose their investments (xi, yi) simultaneously with

each other and they interact only once.

3 Existence and Characterization of Equilibrium

I will confine attention to pure strategy Nash equilibria of the game. In order to characterize

these equilibria, one possible approach would be to simply plug the constraint si = f (xi, yi) into

the payoff function (2) and then, for each contestant, derive one first-order conditions for each

of the two choice variables. However, that methodology makes it hard to determine whether,

or under what circumstances, a pure strategy equilibrium exists (which is a real issue in this

model). It also makes the algebra quite cumbersome, which is a problem in itself and also makes

it difficult to detect the underlying economic logic of the model. I will instead use an alternative

approach that makes it easier to identify a sufficient condition for equilibrium existence. In

addition, this approach makes the analysis significantly more tractable, in spite of the fact that

relatively little structure is imposed on the model.

5The subscript 1 (2, respectively) denotes the partial derivative of f with respect to the first (second, respec-
tively) argument.
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Contestant i’s best reply is defined, in the usual way, as her optimal choice of xi and yi,

given some particular actions of the other contestants, s−i = (s1, . . . , si−1, si+1, . . . , sn). The

idea behind the approach that I will employ is to derive contestant i’s best reply in two steps:

1. First I derive the optimal xi and yi, given some value of s (so, in particular, given the own

score si). In producer theory language, I compute the conditional factor demand functions

by solving a cost-minimization problem.

2. With the conditional factor demand functions at hand I can then, at the second step,

characterize contestant i’s optimal score si (given s−i), which in turn yields the optimal

values of xi and yi (given s−i).

One reason why this approach is helpful is that, at the second step, each contestant has a

single choice variable, which makes it much easier to determine what conditions are required for

equilibrium existence.

3.1 Step 1: The Cost-Minimization Problem

At step 1 the contestant treats the probability of winning, pi, as a parameter and chooses xi and

yi so as to minimize the expected costs piyi+xi, subject to the constraint f (xi, yi) = si. (Thanks

to the Inada conditions stated in the model description, the constraints xi ≥ 0 and yi ≥ 0 do

not bind and we can thus disregard them.) This is equivalent to a standard cost-minimization

problem for a price-taking firm, as studied in microeconomics textbooks (see, e.g., Mas-Colell et

al., 1995, Ch. 5), except that here the “prices” of input xi and yi equal unity and pi, respectively.

The problem is depicted in panel (a) of Figure 1.

The Lagrangian of the cost-minimization problem can be written as Li = piyi + xi −

λi [f (xi, yi)− si], where λi is the shadow price associated with the constraint and where the

argument of pi has been suppressed. The necessary first-order conditions are:

∂Li
∂xi

= 1− λif1 (xi, yi) = 0,
∂Li
∂yi

= pi − λif2 (xi, yi) = 0. (3)

These conditions are also sufficient for a solution to the cost-minimization problem, as the

production function is strictly quasiconcave.6 Hence the conditions in (3), together with the

constraint, define the optimal levels of xi and yi, conditional on si and pi. Denote these levels

by X (si, pi) and Y (si, pi), respectively.

It will be useful to derive more explicit expressions for X (si, pi) and Y (si, pi). To this end,

note that the first-order conditions in (3) can be combined to yield the following condition:

f1 (xi, yi)
f2 (xi, yi)

=
1
pi
. (4)

The left-hand side of (4) is the marginal rate of technical substitution (MRTS) between xi and

yi, and the right-hand side is the relative “price” of the two kinds of investment. It is well known
6In terms of Figure 1, panel (a), the set of values of xi and yi that satisfy f (xi, yi) ≥ si is strictly convex (by

the definition of strict quasiconcavity). This guarantees that the point of tangency between the isocost line and
the isoquant is unique.
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xi

yi

slope = − 1
pi

slope = −g
(
xi
yi

)

si = f (xi, yi)

X

Y

(a) Cost minimization.

xi
yi

m

g
(
xi
yi

)

45◦

(b) Graph of the g function.

m

xi
yi

h (m) 45◦

(c) Graph of the h function.

Figure 1: Panel (a) illustrates a contestant’s cost-minimization problem. The absolute

value of the isoquant’s slope, known as the marginal rate of technical substitution (MRTS),

depends only on the ratio xi/yi. The function g is defined as the value of the MRTS at xi/yi.

This function is graphed in panel (b), where a particular value of the MRTS is denoted by

m. The function h is the inverse of g and it is graphed in panel (c) as a function of m.

that, due to the assumption that f is homogeneous, the MRTS is determined by the ratio xi/yi,

meaning that we can write it as g (xi/yi).7 Moreover, the MRTS is a strictly decreasing function

of this ratio, g′ (xi/yi) < 0.8 We can thus write condition (4) as g (xi/yi) = 1/pi or

xi = yih
(

1
pi

)

, (5)

where h is the inverse of g (i.e., h
def
= g−1). In words, the function h tells us which investment

ratio xi/yi that is consistent with a particular value of the MRTS. Since g is strictly decreasing,

so is h. The graphs of these two functions are plotted in panels (b) and (c) of Figure 1. The

third column of Table 1 indicates which h functions that are associated with certain production

functions.

We can now use (5) to eliminate xi from the constraint si = f (xi, yi).9 Thereafter, with the

help of the resulting expression and (5), we can solve for yi and xi. We then obtain:

Y (si, pi) =
[

si
f (h (1/pi) , 1)

] 1
t

, X (si, pi) = Y (si, pi)h
(

1
pi

)

. (6)

Since the production function f (xi, yi) is assumed to be thrice differentiable, X (si, pi) and

7Since the function f (xi, yi) is homogeneous of degree t, its partial derivatives are homogeneous of degree t−1.
The MRTS can therefore be written as

f1 (xi, yi)
f2 (xi, yi)

=
k−(t−1)f1 (kxi, kyi)
k−(t−1)f2 (kxi, kyi)

=
f1
(
xi
yi
, 1
)

f2
(
xi
yi
, 1
) def

= g

(
xi
yi

)
,

where the second equality is obtained by setting k = 1/yi.
8This follows from the strict quasiconcavity of f (xi, yi); cf. panel (a) of Figure 1.
9Doing that yields si = f [yih (1/pi) , yi] = ytif [h (1/pi) , 1], where the second equality uses the assumption

that f is homogeneous of degree t.
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Y (si, pi) are also differentiable in pi at least twice.

3.2 Step 2: Choosing the Optimal Score

At step 2 I let contestant i choose the optimal value of the score, acknowledging that here pi is

not a parameter but a function of the score. Contestant i’s payoff can be written as

πi (s) = pi (s) vi − C [si, pi (s)] , (7)

where pi (s) is given by (1) and where

C [si, pi (s)] def= pi (s)Y [si, pi (s)] +X [si, pi (s)] (8)

is contestant i’s minimized expected costs, conditional on si (and s−i). A Nash equilibrium of

the hybrid contest can now be defined as a strategy profile s∗ such that πi (s∗) ≥ πi
(
si, s∗−i

)

for all si ≥ 0 and all contestants i. That is, given that all other contestants choose their scores

according to the equilibrium, each contestant i must, at least weakly, prefer her equilibrium

score to all other scores.

Before characterizing such an equilibrium, we should address the question of equilibrium

existence. It follows from standard results in the literature that a pure strategy equilibrium of

the hybrid contest is guaranteed to exist if (i) each contestant’s strategy set is closed and bounded

and (ii) the payoff function πi (s) is strictly quasiconcave in si. Condition (i) is unproblematic,10

but (ii) requires more structure on the model than we have imposed so far. Assumption 1 below

will specify a sufficient condition for (ii) to hold.

First, however, define the following elasticities:

η

(
1
pi

)
def
=
f1
[
h
(

1
pi

)
, 1
]
h
(

1
pi

)

f
[
h
(

1
pi

)
, 1
] , σ

(
1
pi

)
def
= −
h′
(

1
pi

)
1
pi

h
(

1
pi

) , εi (s)
def
=
∂pi
∂si

si
pi
.

In words, η
(

1
pi

)
is the elasticity of output with respect to xi. We have that η

(
1
pi

)
∈ (0, t).11 The

second elasticity, σ
(

1
pi

)
> 0, is the elasticity of substitution. This is a measure of how easy or

difficult it is for a contestant to substitute one kind of investment for another, while keeping the

score variable si unchanged. For a Cobb-Douglas production function, σ
(

1
pi

)
= 1. For a CES

production function, the elasticity can take any positive number but is constant. Finally, εi (s)

is the elasticity of the win probability with respect to si. Our assumptions that pi is strictly

increasing and strictly concave in si imply that εi (s) ∈ (0, 1).

Assumption 1. The production function and the CSF satisfy at least one of the following three

sets of conditions:

(i) t ≤ 1 and εi (s) η
(

1
pi

)
σ
(

1
pi

)
≤ 2 (for all i, pi, and s);

10Although (i) is not satisfied for the model as stated, we can, without loss of generality, fix this by imposing
the constraint si ≤ s, where s is some finite and sufficiently large constant.

11By Euler’s theorem, xf1(x, y) + yf2(x, y) = tf(x, y). This implies that xf1(x, y)/f(x, y) < t.
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(ii) tr ≤ 1, rη
(

1
pi

)
σ
(

1
pi

)
≤ 2, and

pi(s) =
wis
r
i∑n

j=1 wjs
r
j

(for all i, pi, and s), 12 (9)

where r > 0 and wi > 0 are parameters;

(iii) pi(s) is given by (9), f(xi, yi) = xαi y
β
i (with α > 0 and β > 0), and r [α− β (1− αr)] ≤ 1.

The condition t ≤ 1 in (i) says that the score production function exhibits constant or

decreasing returns to scale. If indeed t ≤ 1, then the second condition in (i) is always satisfied

for a Cobb-Douglas production function (since then σ = 1). With a CES production function

(still assuming t ≤ 1), the assumption is guaranteed to hold for all σ ∈ (0, 2]. The set of

conditions (ii) relaxes the requirement that f (xi, yi) exhibits non-increasing returns to scale;

instead it requires that pi(s) is of a generalized Tullock form with scale parameter r and that

tr ≤ 1. The set of conditions (iii) requires both a generalized Tullock form for the CSF and a

Cobb-Douglas production function, but instead offers an alternative condition that may violate

tr ≤ 1. This alternative condition holds, for example, in the Cobb-Douglas-Tullock setting with

r = α = β = 1 that is assumed by Haan and Schoonbeek (2003).

Proposition 1. (Equilibrium existence) Suppose Assumption 1 is satisfied. Then there exists

a pure strategy Nash equilibrium of the hybrid contest.

Proof. The proof of Proposition 1 and other results that are not shown in the main text can

be found in the Appendix. The calculations used for some of the figures are reported in the

Supplementary Material (Lagerlöf, 2017).

Proposition 1 represents a significant step forward relative to the analysis in Melkoyan (2013).

The condition that is required by the proposition (i.e., Assumption 1) can be satisfied also for

arbitrarily large values of the elasticity of substitution as long as, in the production function,

the winner-pay investments matter sufficiently much relative to the all-pay investments. This is

illustrated in Figure 2, which assumes a CES production technology, constant returns to scale

(t = 1), and a CSF given by (9). Given CES, the relative importance of all-pay investments in

the production function can be measured by a parameter α (see the functional form in Table 1).

Figure 2 shows that, if α is small enough (α . .465) and if r ≤ 1, then Assumption 1 holds for

any σ > 0. The figure also shows that, in general, it would be misleading to say that σ must be

sufficiently small for Assumption 1 to be satisfied: For certain α’s the assumption is violated for

intermediate values of σ but satisfied for sufficiently small and large values of this elasticity.13

Now turn to the characterization of equilibrium. The first-order condition associated with

12In addition, pi(0, ∙ ∙ ∙ , 0) = wi/
∑n

j=1 wj .
13The reason why Assumption 1 can hold also for large values of σ is that the elasticity η

(
1
pi

)
is a function

of σ and it will, under certain conditions, be small when σ is large. In particular, for α < 1/2 and σ > 1, the
upper bound of η

(
1
pi

)
equals η (1) =

(
α

1−α

)σ
/
[(

α
1−α

)σ
+ 1
]
, which is decreasing in σ. For further details, see

the Supplementary Material (Lagerlöf, 2017).
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σ

α

0 2
r

4
r

σ∗ 15
r

20
r

0

1
4

α∗

3
4

1

Θ(σ, r) def=
( 2
rσ−2 )

1
σ

1+( 2
rσ−2 )

1
σ

Assumption 1 satisfied

r σ∗ α∗ r σ∗ α∗

.1 91.8 .497 .6 15.3 .479

.2 45.9 .493 .7 13.1 .476

.3 30.6 .490 .8 11.5 .472

.4 23.0 .486 .9 10.2 .469

.5 18.4 .483 1 9.2 .465

Figure 2: Illustration of Proposition 1. Given a CES production function and a CSF that

satisfies (9), with t = 1 and r ≤ 1, Assumption 1 is always satisfied if σ ≤ 2/r; and otherwise

it is satisfied if α ≤ Θ(σ, r). The function Θ(σ, r) is minimized with respect to σ at σ = σ∗,

where it takes the value α∗.

the problem of maximizing (7) with respect to si can be written as

∂πi (s)
∂si

=
∂pi (s)
∂si
vi − C1 (si, pi)− C2 (si, pi)

∂pi (s)
∂si

≤ 0,

with an equality if si > 0. This inequality can be reformulated by using Shephard’s lemma,

C2 (si, pi) = Y [si, pi (s)].14 We thus obtain the following first-order condition for contestant i:

[vi − Y (si, pi (s))]
∂pi (s)
∂si

≤ C1 (si, pi) , (10)

with an equality if si > 0. Condition (10) states that, at the optimum, the marginal benefit of

a larger si must not exceed the marginal cost of a larger si, where the marginal benefit equals

the net value of winning (vi − Y [si, pi (s)]) multiplied by the increase in probability of winning.

Proposition 2. (Characterization of equilibrium) Suppose Assumption 1 is satisfied. Then

s∗ = (s∗1, . . . , s
∗
n) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition

(10) holds, with equality if s∗i > 0, for each contestant i.

Once the equilibrium scores have been pinned down by the first-order conditions (10), we can

use (1) to determine each contestant’s probability of winning and (6) to obtain the investment

levels.
14This result holds because the effect of a change in pi on C [si, pi (s)] that goes through X (si, pi) and Y (si, pi)

must equal zero, as xi and yi have been chosen optimally at step 1 (this is simply an application of the envelope
theorem). For a discussion of Shephard’s lemma see, for example, Chambers (1988, p. 56 onwards).
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4 A Symmetric Hybrid Contest

In this section I derive results for a symmetric hybrid contest: All contestants are ex ante identical

(so vi = v) and the CSF is symmetric. In addition I assume that the CSF is homogeneous.

Assumption 2. For all i, the CSF has the following properties:

(i) Symmetry: for all j 6= i and all a, b ∈ <+, pi(s) |(si,sj)=(a,b)= pj(s) |(si,sj)=(b,a).

(ii) Homogeneity of degree t̃: for all k > 0, pi(ks) = kt̃pi(s).

By combining part (ii) of Assumption 2 and our previous assumption that
∑n
j=1 pj(s) = 1,

one can easily show that the CSF function is indeed homogeneous of degree zero ( t̃ = 0), which

means that it is scale invariant. This, in turn, implies that the partial derivative of pi(s) with

respect to si is homogeneous of degree −1. Now note that, by using the latter result and by

evaluating at symmetry, we can write the derivative of the CSF with respect to the own score

as
∂pi(s, s, . . . , s)

∂si
=
ε̂(n)
ns
, where ε̂(n)

def= εi (1, 1, . . . , 1) .

Thus, by imposing symmetry on the first-order condition (10), which here must hold with equal-

ity, and by using the expressions in (6) and (8), we have

(v − y∗)
ε̂(n)
ns∗

= C1

[

s∗,
1
n

]

⇔ (v − y∗) tε̂(n) = y∗ + nx∗, (11)

where x∗
def
= X

(
s∗, 1
n

)
and y∗

def
= Y

(
s∗, 1
n

)
.15 The second equality in (11) is linear in x∗ and y∗,

and it is now straightforward to solve for these variables and for s∗.

Proposition 3. (Equilibrium, symmetric model) Suppose Assumptions 1 and 2 are satisfied

and that vi = v for all i. Then there is a unique pure strategy Nash equilibrium of the hybrid

contest. In this equilibrium, s∗ = f [h(n), 1] (y∗)t, x∗ = h(n)y∗, and

y∗ =
tε̂(n)v

1 + nh(n) + tε̂(n)
. (12)

The results in Proposition 3 are a substantial generalization of those in Haan and Schoonbeek

(2003) and Melkoyan (2013). The present results hold for any f and pi functions that are

consistent with Assumptions 1 and 2 and with the model assumptions made in Section 2 (most

importantly, that the production function is strictly quasiconcave and homogeneous). From

the results in Proposition 3 we can also, as limit cases, obtain expressions for the equilibrium

expenditures in a pure winner-pay contest and a pure all-pay contest. The former is given by

limh→0 y
∗ = tε̂(n)v/ [1 + tε̂(n)] and the latter equals limh→∞ x∗ = tε̂(n)v/n. To the best of my

knowledge, these closed-form expressions for the symmetric pure all-pay and winner-pay contests

are more general than any ones in the previous literature.

Let us now turn to comparative statics. In accordance with the notation used in Table 1, let

α be a parameter in the production function that increases the relative importance of all-pay

15The last step in (11) uses C1

[
s∗, 1

n

]
= 1
ts∗
C
[
s∗, 1

n

]
= 1
ts∗

[
y∗

n
+ x∗

]
.
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investments. In particular, a larger α is associated with a flatter MRTS and thus a larger value

of h:
∂h(n)
∂α

> 0. (13)

Moreover, note that the family of CSFs defined by Assumption 2 includes the logit CSF, pi(s) =

φ(si)/
∑n
j=1 φ(sj), where φ is a strictly increasing and concave function satisfying φ(0) = 0. For

the logit CSF we have

ε̂(n) =
(n− 1)φ′(1)
nφ(1)

. (14)

Proposition 4. (Comparative statics, investment levels) Both x∗ and y∗ are strictly in-

creasing in v and t. Moreover, x∗ is strictly increasing and y∗ is strictly decreasing in α. Finally,

assuming a logit CSF, the effects of a larger number of contestants on x∗ and y∗ are as follows:

∂x∗

∂n
< 0⇔ σ(n) > −

n (n− 2)h (n)− 1
(n− 1) [1 + tε̂ (n)]

,
∂y∗

∂n
> 0⇔ σ(n) >

n(n− 2)h(n)− 1
(n− 1)nh(n)

; (15)

and if σ(n) ≥ 1, then necessarily ∂x
∗

∂n < 0 and ∂y
∗

∂n > 0.

The comparative statics results with respect to v and α are straightforward. Similarly, the

result about t can easily be understood in light of the fact that this is a returns-to-scale param-

eter. In order to understand the comparative statics results with respect to n, note that a larger

number of contestants in a symmetric equilibrium means a lower probability of winning for any

one of them. This lowers the relative cost of investing in yi. As a consequence, whenever it is

sufficiently easy to substitute between xi and yi, we have ∂x
∗

∂n < 0 and ∂y
∗

∂n > 0. However, if the

elasticity of substitution σ(n) is relatively small, then we can have other results. This is easy to

see from the relationship
∂y∗

∂n

n

y∗
= σ(n) +

∂x∗

∂n

n

x∗
, (16)

which follows immediately from x∗ = h(n)y∗. In the limit where σ(n) → 0, it is clear from

(16) that ∂x
∗

∂n and ∂y
∗

∂n must have the same sign. The reason is obvious. As σ(n) → 0, the score

production function requires xi and yi to be used in fixed proportions (a Leontief production

technology). It turns out that, by choosing the parameters appropriately, we can make either both

derivatives positive (if f is winner-pay intensive) or both negative (if f is all-pay intensive)—at

least locally.16 Panels (a) and (b) of Figure 3 illustrate this.

The total amount of equilibrium expenditures in the symmetric hybrid model is defined as

RH
def
= nC

[
s∗, 1
n

]
. It is interesting to compare the magnitude of RH to the total equilibrium

expenditures in the corresponding pure all-pay contest, which will be denoted by RA. The

latter can be obtained from the current framework by, for example, assuming a Cobb-Douglas

production function, so that f (xi, yi) = xαi y
t−α
i , and then consider the limit α→ t. Doing that

16It may be surprising that both derivatives can be positive. The reason is that, in a pure winner-pay contest,
an individual contestant’s investment can be increasing in n, as these investments are paid only by the winner
and thus the aggregate investments of that contest correspond, in a way, to the individual investments of the pure
all-pay contest. (With a lottery function, the individual equilibrium investments in the pure winner-pay contest
equal y∗ = (n− 1)v/(2n− 1), which indeed are increasing in n.) For a low enough value of α, the hybrid contest
is sufficiently close to the pure winner-pay contest that it exhibits the same feature.
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(a) Graphs of y∗.

n

x∗
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(b) Graphs of x∗.

n
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(c) Graphs of RH.

Figure 3: Illustration of Propositions 4 and 5. Assuming a CES production function and

a Tullock CSF, with t = r = v = 1, panels (a) and (b) plot y∗ and x∗ against n for the

following parameter configurations: (σ, α) = (1, 1
2)—the blue, dotted curve; (σ, α) = (1

2 ,
1
2)—

the red, dashed curve; (σ, α) = (0, 7
10)—the brown, solid curve; and (σ, α) = (0, 1

10)—the

black, loosely dashed curve. Under the same assumptions, panel (c) plots RH against n for the

following parameter configurations: (σ, α) = (1, 1
2)—the blue, dotted curve; (σ, α) = (1

2 ,
1
2)—

the red, dashed curve; (σ, α) = (2, 9
10)—the brown, solid curve; and (σ, α) = (2, 1

2)—the

black, loosely dashed curve.

yields

RA = tε̂(n)v. (17)

Proposition 5. (Total expenditures) In the symmetric hybrid model, the total amount of

equilibrium expenditures can be written as:

RH =
[

1−
y∗

v

]

RA =
[

1
v [1 + nh(n)]

+
1
RA

]−1

. (18)

These expenditures are strictly lower than the total equilibrium expenditures in the corresponding

pure all-pay contest, RH < RA. Moreover, RH is strictly increasing in v, t, and α. Finally,

assuming a logit CSF, RH is weakly increasing in n if and only if: (i)

σ (n) ≤ 1 +
4φ (1)n

tφ′ (1) (n− 1)2 ; (19)

or (ii) inequality (19) is violated and h (n) /∈ (ΞL,ΞH), where

ΞL
def
=
K

2
−

1
2n

√
n2K2 − 4, ΞH

def
=
K

2
+

1
2n

√
n2K2 − 4, with K

def
=
tφ′(1)
φ(1) (n− 1)2 [σ (n)− 1]− 2n

n2 .

A striking result reported in Proposition 5 is that, for all parameter values, the hybrid model
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yields lower total expenditures than the pure all-pay contest (i.e., RH < RA). We can understand

this result by noting that the effective prize that a contestant can win in a hybrid contest is

not v (as it is in the pure all-pay contest) but v − yi. All else equal, this lowers the contestant’s

incentive to invest in xi and yi and she will thus be content with a lower value of the score si.

In other words, the contestant’s best reply, as implicitly defined by the first-order condition in

(10), will shift downwards. As this is true for all contestants, the result is an equilibrium with

lower investment levels and expenditures.17

Proposition 5 also reports several comparative statics results. As was the case for Proposition

4, the results about v and t are straightforward. The comparative statics results with respect to α

can be understood with the help of the results in Proposition 4: A larger value of this parameter

makes each contestant use more of all-pay investments and less of winner-pay investments; this,

as we concluded in the paragraph immediately above, is conducive to large expenditures. So the

reason why ∂RH/∂α > 0 is that a larger α makes the hybrid model closer to the pure all-pay

contest and this contest always yields larger expenditures.

What about the comparative statics with respect to n? In the pure all-pay contest with a

logit CSF, the total expenditures are increasing in this parameter (see eqs. (14) and (17)). A

sufficient condition for the same result to hold in the hybrid model is that condition (19) is

satisfied, which requires a small enough elasticity of substitution. However, if (19) is violated

and if h(n) is neither too large nor too small, then RH can be decreasing in n. The reason is that

a larger n makes winner-pay investments less costly in relative terms; this leads to substitution

from all-pay to winner-pay investments and thus a larger y∗, which lowers the effective value

of the prize. The lower value of the prize, in turn, leads to lower total expenditures. The result

that RH can be decreasing in n, which was also shown by Melkoyan (2013),18 is illustrated in

panel (c) of Figure 3. Moreover, for an example with a CES production function, r = t = 1,

and n = 10, Figure 4 indicates where in the (α, σ)-space that this phenomenon occurs. It also

confirms that the phenomenon can indeed occur for parameter values for which Assumption 1

is satisfied.

Finally consider the question how the total expenditures, under the assumption of a logit

CSF, evolve as the number of contestants becomes very large. As a benchmark, first note that the

limit value of the expenditures in the pure all-pay contest (i.e., limn→∞RA) equals tφ′(1)v/φ(1);

this follows immediately from (14) and (17). Next, from the right-most expression in (18) we see

that the way in which the corresponding limit value in the hybrid contest relates to tφ′(1)v/φ(1)

depends on the limit value of nh(n). This, in turn, depends on whether h(n) decreases slower

or faster than n increases. Proposition 6 summarizes these results.

Proposition 6. (Limit, total expenditures) Assume a logit CSF. As n → ∞, the total

17Within a simpler framework, Wärneryd (2000, p. 152) shows in greater detail and with the help of a figure
how the best reply shifts downwards in a winner-pay environment relative to a all-pay setting. The interested
reader is encouraged to consult Wärneryd’s useful discussion.

18A similar result, called the exclusion principle, has been obtained by Baye, Kovenock and De Vries (1993).
However, these authors consider another setting (an all-pay auction) and their result is driven by a different logic
(which involves asymmetry in the contestants’ valuations). For further work related to the exclusion principle, see
Che and Gale (2000) and Alcalde and Dahm (2010), who study non-deterministic CSFs, and Kirkegaard (2013)
who studies a deterministic CSF with incomplete information.
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Figure 4: In the symmetric model, total expenditures can be decreasing in n. The graphs

assume a CES production function and t = φ′(1)/φ(1) = 1.

amount of expenditures in the symmetric hybrid model can be written as:

lim
n→∞
RH =






1+L
tφ′(1)v/φ(1)+1+L

tφ′(1)v
φ(1) if limn→∞ nh(n)

def
= L ∈ [0,∞)

tφ′(1)v
φ(1) if L =∞.

(20)

For a CES production function we have nh(n) =
(
α

1−α

)σ
n1−σ. This means that, for such a

technology, the limit total expenditures equal the ones in the all-pay contest if and only if σ < 1;

for σ ≥ 1, they are strictly lower than the limit total expenditures in the all-pay contest.

5 Asymmetric Hybrid Contests

In this section I derive results for three asymmetric hybrid contests. In the first model I allow for

the possibility that the decision process (i.e., the CSF) is biased in favor of one of the contestants.

In the second model I instead let the contestants have different valuations for winning. In the

third one I allow for both these kinds of asymmetry, but I let the degree of bias in the CSF be

endogenous. Throughout I assume that there are two contestants, n = 2. Moreover, the CSF

takes the following extended Tullock form:

Assumption 3. The CSF is given by

pi(s) =
wis
r
i

w1sr1 + w2sr2
, r ∈ (0, 1] , w1, w2 > 0.19 (21)

Under Assumption 3, the derivative of the win probability with respect to the own score

becomes ∂pi/∂si = rpi(1− pi)/si. By using this expression and the relationships in (6) and (8),

19In addition, pi(0, 0) = wi/(w1 + w2).
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we can write the first-order conditions in (10) as20

y∗i =
rtp∗i (1− p

∗
i )vi

rtp∗i (1− p
∗
i ) + p∗i + h

(
1
p∗i

) , for i = 1, 2. (22)

By plugging the equilibrium scores s∗1 and s
∗
2 into (21), we also obtain the relationship p∗1w2 (s∗2)r =

(1− p∗1)w1 (s∗1)r, which can be restated as Υ(p∗1) = 0, where

Υ(p1) def=

w2vrt2
w1vrt1
p1f

[
h
(

1
1−p1

)
, 1
]r

[
rtp1(1− p1) + 1− p1 + h

(
1

1−p1

)]rt −
(1− p1)f

[
h
(

1
p1

)
, 1
]r

[
rtp1(1− p1) + p1 + h

(
1
p1

)]rt .

We thus obtain the following result.

Proposition 7. (Characterization and uniqueness of equilibrium) Suppose Assumptions

1 and 3 are satisfied. Moreover, suppose n = 2 and that the two contestants are ex ante identical

in all respects except that, possibly, w1 6= w2 and v1 6= v2. Then the equilibrium values of p∗1,

y∗1 and y∗2 are determined by the three equations (22) and Υ(p∗1) = 0. The all-pay equilibrium

investment levels are obtained from the relationships x∗1 = y∗1h(
1
p∗1

) and x∗2 = y∗2h(
1

1−p∗1
). The

equilibrium is guaranteed to be unique if, for all pi ∈ [0, 1], rη
(

1
pi

)
σ
(

1
pi

)
≤ 1.

The condition for uniqueness stated in Proposition 7 is not implied by Assumption 1. Hence,

in general we cannot rule out multiplicity of equilibria. The comparative statics analysis pre-

sented below will consider an equilibrium in which Υ′(p∗1) > 0 (a stability property). Such an

equilibrium always exists under Assumption 1. Thus, if the model has a unique equilibrium,

then this indeed satisfies Υ′(p∗1) > 0.

5.1 A Biased Decision Process

Suppose v1 = v2 but that we may have w1 6= w2. That is, the contestants have the same

valuations but the decision process may be biased in favor of contestant 1 (if w1 > w2) or

contestant 2 (if w2 > w1).

Proposition 8. (Biased decision process) Suppose Assumptions 1 and 3 are satisfied. More-

over, suppose n = 2 and that the two contestants are ex ante identical in all respects except that,

possibly, w1 6= w2. Then:

(i) p∗1 > p
∗
2 ⇔ y

∗
1 < y

∗
2 ⇔ C(s∗1, p

∗
1) > C(s∗2, p

∗
2).

(ii) Suppose in addition that Υ′(p∗1) > 0. Evaluated at symmetry, contestant 1’s equilibrium

win probability is strictly increasing in w1 and the equilibrium winner-pay investments of

contestant 1 (2, resp.) are strictly decreasing (strictly increasing, resp.) in w1. Moreover,

∂x∗1
∂w1
|w1=w2> 0⇔

∂x∗2
∂w1
|w1=w2< 0⇔ σ(2) >

2
2 + rt

.

20Given that there are only two contestants, both of them must be active in an equilibrium.
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Part (i) of Proposition 8 says that the contestant who is more likely to win invests less in

yi than her rival does; the reason is that the higher win probability makes the relative cost of

winner-pay investments higher, so the contestant does less of it. Part (i) also reports that the

expected expenditures of the contestant with the higher win probability are higher than her

rival’s.

Part (ii) concerns the effect of a small change in w1 on the win probability and on the

winner-pay and all-pay investments. To simplify the algebra, the analysis is restricted to the case

where the difference between w1 and w2 is small. The results say that, evaluated at symmetry,

contestant 1’s win probability is increasing in w1, which is probably not very surprising. Similarly,

evaluated at symmetry, the winner-pay investments of contestant 1 (2, resp.) go down (up,

resp.) as w1 increases. The reason is that, for contestant 1, winner-pay investments become

more expensive due to to the higher win probability (and vice versa for contestant 2). Moreover,

again evaluated at symmetry, the all-pay investments of contestant 1 (2, resp.) are increasing

(decreasing, resp.) in w1 if and only if the elasticity of substitution is larger than a particular

threshold, which is smaller than unity. That is, if the elasticity of substitution is equal to at least

one, then the all-pay investments move in opposite direction to the winner-pay investments. This

is simply because, again, each contestant substitutes from one influence channel to another, when

their relative costs change. However, for low enough values of the elasticity of substitution, the

two investment levels move in the same direction when w1 goes up: For the favored contestant,

both decrease; and for her rival, both increase. This may suggest that, for such low values of the

elasticity of substitution, the favored contestant’s expenditures are lower than those for the rival.

Yet the result in part (i) says that this is not the case: The favored contestant’s expenditures

are always higher than her rival’s. Apparently, although both x∗i and y
∗
i are lower for the favored

contestant, her probability of winning is sufficiently much higher to ensure that the result holds.

5.2 Different Valuations

Now suppose that w1 = w2 but that we may have v1 6= v2. That is, the decision process is

unbiased but the contestants may have different valuations. We have the following result.

Proposition 9. (Different valuations) Suppose Assumptions 1 and 3 are satisfied. Moreover,

suppose n = 2 and that the two contestants are ex ante identical in all respects except that,

possibly, v1 6= v2. Then:

(i) p∗1 > p
∗
2 ⇔

y∗1
v1
<
y∗2
v2
;

(ii) v1 − y∗1 > v2 − y
∗
2 ⇔ C(s∗1, p

∗
1) > C(s∗2, p

∗
2).

Part (i) of Proposition 9 states that a larger win probability is associated with a lower ratio

between winner-pay investment and valuation (y∗i /vi). This differs somewhat from the result in

part (i) of Proposition 8. When vi may vary, as here, it is not necessarily true that the contestant

with the higher win probability chooses less winner-pay investments, since this contestant may

also have a higher valuation. Part (ii) provides a condition for contestant 1 to contribute more to

the expected total expenditures than contestant 2, namely, that the ex post net value of winning

(vi − y∗i ) is larger for contestant 1.
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5.3 Different Valuations and Endogenous Decision Process

Suppose finally that contestant 1 may have a higher valuation than contestant 2 (v1 ≥ v2) and

that the relationship between w1 and w2 is endogenous. In particular, for any given values of

v1, v2, and w2, a principal can freely choose w1 and thus determine the magnitude of the bias

in the CSF. The principal’s objective is to maximize the expected total amount of equilibrium

expenditures. The timing is as follows. First the principal chooses w1 ≥ 0; then this choice is

observed by the two contestants and, exactly as in the previous subsections, they simultaneously

make their all-pay and winner-pay investments. Let ŵ1 denote the value of w1 at a (subgame

perfect Nash) equilibrium of the above game. Also, let p̂1 denote the equilibrium value of p1.

What can we say about ŵ1 and p̂1? I will explore this question under the following assumption.

Assumption 4. The production function is of Cobb-Douglas form: f (xi, yi) = xαi y
β
i , for α > 0

and β > 0.

Under Assumption 4, and for a given p1, the expected total amount of expenditures can be

written as

RH = rtp1 (1− p1)
rβ [p1v1 + (1− p1) v2] + v1 + v2

[rβ (1− p1) + 1] (rβp1 + 1)
(23)

(for a derivation, see the proof of Proposition 10). Moreover, an equilibrium value of p1 satisfies

the following equality, which is a special case of Υ (p1) = 0:

w1 = w2

(
p1

1− p1

)1+rβ (rβ (1− p1) + 1
rβp1 + 1

v2
v1

)rt
. (24)

Note that (23) does not depend on w1 directly, only through p1. Thus, ŵ1 can be determined

recursively: We first find p̂1 (by maximizing (23) with respect to p1) and then plug p1 = p̂1 into

(24) to obtain ŵ1.

Proposition 10. (Optimal bias) Suppose that Assumptions 1, 3, and 4 are satisfied, that

n = 2 and that the two contestants are ex ante identical in all respects except that, possibly,

w1 6= w2 and v1 ≥ v2. Also suppose that w1 is chosen at an ex ante stage so as to maximize

the expected total expenditures. Then the equilibrium values of p1 and w1 satisfy: p̂1 = 1
2 and

ŵ1 = w2 if v1 = v2; and p̂1 > 1
2 if v1 > v2. Moreover, ∂p̂1∂v1 > 0 and ∂p̂1∂v2 < 0 for all v1 ≥ v2, and

∂p̂1
∂(rβ) > 0 for all v1 > v2. Finally,

lim
v1→∞

p̂1 < 1, lim
v1→∞

ŵ1 = 0, lim
v1→v2

∂ŵ1

∂v1
< 0.

Proposition 10 says that if v1 = v2, so that there is no exogenous asymmetry, then the

expected total expenditures are maximized by making the CSF unbiased, which also means

p̂1 = 1
2 . The proposition also says that if v1 > v2, then the expected total expenditures are

maximized by choosing a w1 that makes contestant 1 more likely to win than contestant 2.

However, this does not necessarily mean that the bias is in favor of contestant 1, as this contestant

also has a higher valuation. On the contrary, for a small difference between v1 and v2, the

endogenously chosen bias is necessarily in favor of contestant 2. Likewise, if the difference between
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(b) The weight in the CSF that is assigned to

the high-valuation contestant’s score.

Figure 5: The model with different valuations and endogenous decision process. Both panels

assume t = r = v2 = 1. They plot p̂1 and ŵ1, respectively, against v1 for three different values

of α: 0.9 (the blue, dotted curve), 0.5 (the green, dashed curve), and 0.1 (the red, solid curve).

the valuations is very large (so v1 → ∞, while v2 is fixed), then again the bias is in favor of

contestant 2. Deriving analytical results for the case where the difference (v1 − v2) is neither

infinitesimally small nor infinitely large is challenging; however, Figure 5 shows some numerical

examples where the optimally chosen bias is in favor of contestant 2 for all v1 > v2.

Intuitively, the result that p̂1 > 1
2 whenever v1 > v2 is straightforward to understand. The

high-valuation contestant is a more valuable contributor to the expected total expenditures.

Therefore, since all-pay investments are more conducive to a high expenditure level, the relative

price of all-pay investments should be made lower for contestant 1 than for contestant 2. Hence

p̂1 >
1
2 . In order to create the outcome p̂1 > 1

2 , the principal is helped by the fact that,

exogenously, v1 > v2. This turns out to be more than enough to create the desired difference in

win probability—there is no need to, in addition, bias the CSF in favor of contestant 1. Indeed,

the effect arising from v1 > v2 must be alleviated by setting ŵ1 < w2, i.e., to create a bias against

the high-valuation contestant. Intuitively, the result that ŵ1 < w2 does not seem obvious, which

raises some questions about its robustness. To explore this further would be interesting but is

beyond the scope of the present paper.

6 Concluding Remarks

In this paper I have used a producer theory approach to study contests where the contestants

can make both all-pay and winner-pay investments—so-called hybrid contests. This approach

allowed for a general analysis that still is very tractable, in particular for the symmetric case.

Pure all-pay and winner-pay contests are obtained as limit cases of this setting, where the
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former limit case is similar to a standard Tullock (1980) contest but much more general. Under

symmetry, the analysis yields a simple closed-form solution, in spite of the general setting.21

Thanks to the producer theory approach I could derive a sufficient condition for equilibrium

existence—stated in terms of basic elasticities of the model—that implies that there can be an

equilibrium also for arbitrarily large values of the elasticity of substitution. The hybrid contest

always gives rise to a smaller amount of expected total expenditures than the corresponding pure

all-pay contest. This fact and the contestants’ opportunity to substitute played an important

role also in other parts of the analysis. In particular, the results about the relationship between

total expenditures and n in Proposition 5 and the optimal-bias result in Proposition 10 are

driven by a contestant’s incentive to substitute from winner-pay to all-pay investments as the

economic environment changes, in conjunction with the fact that all-pay investments are more

conducive to large expenditures.

It would be interesting to apply the producer theory approach to other models of contests

where the contestants have access to multiple influence channels or where they can choose multi-

dimensional efforts (see the literature review in the Introduction). However, in other applications

a rival’s individual effort levels may possibly matter directly for a contestant’s payoff—not only

through an aggregator variable like the score in the hybrid model studied here. If so, the approach

might not be as helpful as it has been in the present paper. Nevertheless, my intention is to

explore such alternative applications in future work.

The analysis in the present paper has given rise to a large number of predictions, which

would be desirable to test with the help of experimental or field data. The setting used here

should be particularly useful as a basis for such empirical studies, as it is quite general and the

analysis has spelled out comparative statics results under a very broad set of circumstances.

Yet there are several directions in which the current setting, in future theoretical work, could

be extended. Examples of extensions that seem promising and interesting include multi-period

settings and/or sequential moves, asymmetric hybrid contests with more than two contestants,

and to study contest design questions in broader settings than considered here.

21Indeed, also the closed-form solutions for the all-pay and winner-pay limit cases are, to the best of my
knowledge, more general than any ones in the previous literature.
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Appendix

Proof of Proposition 1

We can use standard existence results that are stated in, for example, Fudenberg and Tirole (1992, Theorem
1.2, p. 34) and Ritzberger (2002, Theorem 5.6, p. 223). In the present application, the critical condition is that
contestant i’s payoff function is strictly quasiconcave in si. Below I will verify that this condition holds under the
assumptions listed in the proposition. I will do this by showing that ∂

2πi
∂s2
i

< 0 at any point where ∂πi
∂si

= 0.

From the analysis in the main text, it follows that we can write the derivative of contestant i’s payoff function
w.r.t. si as

∂πi
∂si

= [vi − Y (si, pi (s))] ∂pi
∂si
− C1 (si, pi). Differentiating again yields

∂2πi
∂s2i

= −
[
Y1 (si, pi) + Y2 (si, pi)

∂pi
∂si

]
∂pi
∂si

+ [vi − Y (si, pi)]
∂2pi
∂s2i
− C11 (si, pi)− C12 (si, pi)

∂pi
∂si
.

Now note that C12 (si, pi) = C21 (si, pi) = Y1 (si, pi). For a value of si for which ∂πi
∂si

= 0 holds, we also have

vi − Y (si, pi) = C1(si,pi)
∂pi/∂si

. Moreover, C1 (si, pi) =
[
pi + h

(
1
pi

)]
Y1 (si, pi) and

C11 (si, pi) =

[
pi + h

(
1
pi

)]
Y11 (si, pi) =

1− t
tsi

[
pi + h

(
1
pi

)]
Y1 (si, pi)

(cf. (6) and (8)). Therefore, evaluated at a value of si where
∂πi
∂si

= 0, the second-derivative can be written

∂2πi
∂s2i
| ∂ui
∂si

=0
= −

[
2Y1 (si, pi) + Y2 (si, pi)

∂pi
∂si

]
∂pi
∂si

+

[
∂2pi/∂s

2
i

∂pi/∂si
−

1− t
tsi

][
pi + h

(
1
pi

)]
Y1 (si, pi) . (A1)

The expression in (A1) is strictly negative if and only if
[

2
Y1 (si, pi) si
Y (si, pi)

+
Y2 (si, pi) pi
Y (si, pi)

∂pi
∂si

si
pi

]
∂pi
∂si
>

[
∂2pi/∂s

2
i

∂pi/∂si
−

1− t
tsi

][
pi + h

(
1
pi

)]
Y1 (si, pi) si
Y (si, pi)

. (A2)

Now note that Y1(si,pi)si
Y (si,pi)

= 1
t
and

Y2 (si, pi) pi
Y (si, pi)

= −
1
t

(si)
1
t

[
f

(
h

(
1
pi

)
, 1

)]− 1
t
−1

f1

[
h

(
1
pi

)
, 1

]
h′
(

1
pi

)(
−1
p2i

)
× pi

[
si

f (h (1/pi) , 1)

]− 1
t

=
1
t

f1
[
h
(

1
pi

)
, 1
]
h
(

1
pi

)

f
(
h
(

1
pi

)
, 1
) ×

h′
(

1
pi

)
1
pi

h
(

1
pi

) = −
η
(

1
pi

)
σ
(

1
pi

)

t
.

Inequality (A2) can therefore be written as
[

2
t
−
η
(

1
pi

)
σ
(

1
pi

)
εi (s)

t

]
∂pi
∂si
>

[
∂2pi/∂s

2
i

∂pi/∂si
−

1− t
tsi

]
[pi + h (1/pi)]

1
t

or, equivalently, as

η

(
1
pi

)
σ

(
1
pi

)
εi (s) < 2−

[
∂2pi/∂s

2
i

∂pi/∂si
−

1− t
tsi

] [
pi + h

(
1
pi

)]

∂pi/∂si
. (A3)

The last term in the above inequality is strictly negative for all t ≤ 1. Therefore, a sufficient condition for (A3)
to hold is that η

(
1
pi

)
σ
(

1
pi

)
εi (s) ≤ 2. This proves the claim for part (i) of Assumption 1. In order to prove the

claim for part (ii), note that the derivative of the CSF in (9) can be written as ∂pi
∂si

= rpi (1− pi) /si, and the

second-derivative is given by ∂2pi
∂s2
i

= rpi (1− pi) [r (1− 2pi)− 1] /s2i . Thus, the term in square brackets in (A3)

becomes
∂2pi/∂s

2
i

∂pi/∂si
−

1− t
tsi

=
r (1− 2pi)− 1

si
−

1− t
tsi

=
tr (1− 2pi)− 1

tsi
,

which is non-positive for all pi if tr ≤ 1. Moreover, εi (s) = r(1−pi) ≤ r. Hence the result follows. Finally consider
part (iii). The additional Cobb-Douglas assumption means that we can write the last term in (A3) as

[
∂2pi/∂s

2
i

∂pi/∂si
−

1− t
tsi

][
pi + h

(
1
pi

)

∂pi/∂si

]

=

[
tr (1− 2pi)− 1

tsi

][
pi + α

β
pi

rpi (1− pi) /si

]
=
tr (1− 2pi)− 1
rβ (1− pi)

.

Moreover, the left-hand side of (A3) simplifies to η
(

1
pi

)
σ
(

1
pi

)
εi (s) = αr (1− pi). Inequality (A3) therefore
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becomes

αr (1− pi) < 2−
tr (1− 2pi)− 1
rβ (1− pi)

⇔ αβr2 (1− pi)
2 < 2rβ (1− pi)− tr (1− 2pi) + 1.

This inequality is most stringent at pi = 0 (and it is strictly less stringent for higher values of pi). It therefore
suffices if the inequality holds weakly when evaluated at pi = 0:

αβr2 ≤ 2rβ − tr + 1 = rβ − αr + 1⇔ r [α− β (1− αr)] ≤ 1,

which gives us the result.

Proof of Proposition 3

Under symmetry, the expression in (5) can be written as x∗ = h (n) y∗. Plugging this into (11) and then solving for
y∗ yields (12). The solution to this linear equation system is unique, and so the model has a unique equilibrium.
The expression for s∗ is obtained by plugging h (1/pi) = h (n) and yi = y∗ into the equality si = ytif [h (1/pi) , 1],
which was derived in footnote 9.

Proof of Proposition 4

The claims about v, t, and α are straightforward to verify, so the calculations are omitted. Consider the condition
for y∗ to be strictly increasing in n. Differentiating the expression for y∗ in (12), we have

∂y∗

∂n
=
ε̂ ′ (n) [1 + nh (n) + tε̂ (n)]− ε̂ (n) [h (n) + nh′ (n) + tε̂ ′ (n)]

(tv)−1 [1 + nh (n) + tε̂ (n)]2
> 0⇔ ε̂ ′ (n) [1 + nh (n)] > ε̂ (n)

[
h (n) + nh′ (n)

]
.

Differentiating (14), we obtain ε̂ ′ (n) = φ′ (1) /n2φ (1). Using this and (14) in the second inequality above yields
1 +nh (n) > n (n− 1) [h (n) + nh′ (n)] = n (n− 1)h (n) [1− σ (n)], which simplifies to the condition in (15). Next
consider to the condition for x∗ to be strictly decreasing in n. We have x∗ = h (n) y∗, where y∗ is given by (12).
Differentiating yields

∂x∗

∂n
=

[ε̂ ′ (n)h (n) + ε̂ (n)h′ (n)] [1 + nh (n) + tε̂ (n)]− ε̂ (n)h (n) [h (n) + nh′ (n) + tε̂ ′ (n)]

(tv)−1 [1 + nh (n) + tε̂ (n)]2
< 0⇔

[
ε̂ ′ (n)h (n) + ε̂ (n)h′ (n)

]
[1 + nh (n)] + t [ε̂ (n)]2 h′ (n) < ε̂ (n)h (n)

[
h (n) + nh′ (n)

]
.

Dividing through by ε̂ (n) and using ε̂ ′ (n) /ε̂ (n) = 1/n (n− 1), the inequality simplifies to
[
h (n)
n (n− 1)

+ h′ (n)

]
[1 + nh (n)] + tε̂ (n)h′ (n) < h (n)

[
h (n) + nh′ (n)

]

or, equivalently, h (n) [1− (n− 1)σ (n)] [1 + nh (n)]−tε̂ (n) (n− 1)h (n)σ (n) < n (n− 1) [h (n)]2 [1− σ (n)], which
simplifies to the condition in (15). Finally consider the claim that σ (n) ≥ 1 is sufficient for both conditions in
(15) to hold. Substituting n−2

n−1 (which is smaller than unity) for σ (n) in the condition for ∂y
∗

∂n
in (15) yields

n− 2
n− 1

>
n (n− 2)h (n)− 1
n (n− 1)h (n)

⇔ (n− 2)nh (n) > n (n− 2)h (n)− 1⇔ 1 > 0,

which always holds. And substituting 1 for σ (n) in the condition for ∂x
∗

∂n
in (15) yields

1 > −
n (n− 2)h (n)− 1
(n− 1) [1 + tε̂ (n)]

⇔ (n− 1) [1 + tε̂ (n)] > −n (n− 2)h (n) + 1⇔ n− 2 + tε̂ (n) (n− 1) > −n (n− 2)h(n),

which again always holds.

Proof of Proposition 5

The first equality in (18) follows immediately from (11) and (17), since nC
[
s∗, 1

n

]
= y∗ + nx∗. To verify the

second equality, note that

(
1−
y∗

v

)
RA =

(
1−

RA/v

1 + nh(n) +RA/v

)
RA =

RA [1 + nh (n)] v
[1 + nh (n)] v +RA

=

[
1

[1 + nh (n)] v
+

1
RA

]−1

,

where the first equality uses (12) and (17). The claim that RH < RA follows immediately from (18) and y∗ > 0.
The claims about v, t, and α are straightforward to verify, so the calculations are omitted. Consider the condition
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for RH to be weakly increasing in n. By differentiating the right-most expression for RH in (18), we have

∂RH

∂n
= −

[
1

v [1 + nh (n)]
+

1
RA

]−2 [
−
h (n) + nh′ (n)

v [1 + nh (n)]2
−
∂RA/∂n

(RA)2

]
≥ 0⇔

∂RA/∂n

(RA)2 ≥ −
h (n) [1− σ (n)]

v [1 + nh (n)]2
.

By differentiating the expression in (17) (also using (14)), we obtain ∂RA/∂n = tvφ′ (1) /
[
φ (1)n2

]
. By plugging

this and the expression for RA in (17) (combined with (14)) into the above inequality and then rewriting, we have

tφ′ (1)
φ (1)

(n− 1)2 [σ (n)− 1]h (n) ≤ [1 + nh (n)]2 = 1 + 2nh (n) + n2h (n)2 ⇔ h (n)2 −Kh (n) ≥ −
1
n2
, (A4)

where K is defined in Proposition 5. Since h (n) > 0, this inequality always holds if K ≤ 0. Suppose K > 0. Then
the left-hand side is negative for all h (n) < K, and it is minimized at h (n) = K/2. Evaluating inequality (A4)
at h (n) = K/2 yields

−
K2

4
≥ −

1
n2
⇔ K ≤

2
n
⇔ σ (n) ≤ 1 +

4φ (1)n

tφ′ (1) (n− 1)2 . (A5)

Thus if (A5) holds, then (A4) is always satisfied. If (A5) is violated, then also (A4) is violated for values of h (n)
between the two roots of (A4). Solving for these roots (by completing the square), we have:

h (n)2 −Kh (n) = −
1
n2
⇔
[
h (n)−

K

2

]2

=
n2K2

4n2
−

4
4n2
⇔ h (n) =

K

2
±

1
2n

√
n2K2 − 4.

Thus, total expenditures are increasing in n if and only if (i) inequality (A5) holds or (ii) inequality (A5) is
violated and h (n) /∈ (ΞL,ΞH), where ΞL and ΞH are defined in Proposition 5.

Proof of Proposition 7

The first-order condition in (10) can be written as

(vi − y
∗
i )
rp∗i (1− p∗i )
s∗i

=
1
ts∗i
C (s∗i , p

∗
i )⇔ rt (vi − y

∗
i ) p

∗
i (1− p∗i ) =

[
p∗i + h

(
1
p∗i

)]
y∗i , (A6)

where the relationships C1 (s∗i , p
∗
i ) = 1

ts∗
i
C (s∗i , p

∗
i ) and C (s∗i , p

∗
i ) =

[
p∗i + h

(
1
p∗
i

)]
y∗i were used. By solving (A6)

for y∗i , we obtain (22). The remaining parts of the characterization claim are either shown in the main text or
straightforward. It remains to prove the uniqueness claim. Note that the equilibrium is defined recursively: The
only endogenous variable in the equality Υ (p1) = 0 is p1; moreover, given a value of p∗1, the winner-pay investments
y∗1 and y∗2 are uniquely determined by (22). To prove the claim, it thus suffices to show that if rη

(
1
pi

)
σ
(

1
pi

)
≤ 1

for all pi ∈ [0, 1], then the equation Υ (p1) = 0 has a unique root. A sufficient condition for this, in turn, is that
Υ (p1) is strictly increasing (by Proposition 1, we know that the equation has at least one root). The equation
Υ (p1) = 0 can equivalently be written as Υ̂ (p1) = 0, where

Υ̂ (p1) = ln

[
w2v

rt
2

w1vrt1

]
+ ln p1 + r ln f

[
h

(
1

1− p1

)
, 1

]
+ rt ln

[
rtp1 (1− p1) + p1 + h

(
1
p1

)]

− ln (1− p1)− r ln f

[
h

(
1
p1

)
, 1

]
− rt ln

[
rtp1 (1− p1) + 1− p1 + h

(
1

1− p1

)]
.

Differentiating with respect to p1 yields

Υ̂′ (p1) =
1
p1

+
rf1
[
h
(

1
1−p1

)
, 1
]
h′
(

1
1−p1

)
1

(1−p1)2

f
[
h
(

1
1−p1

)
, 1
] +

rt
[
rt (1− 2p1) + 1− h′

(
1
p1

)
1
p2

1

]

rtp1 (1− p1) + p1 + h
(

1
p1

)

+
1

1− p1
+
rf1
[
h
(

1
p1

)
, 1
]
h′
(

1
p1

)
1
p2

1

f
[
h
(

1
p1

)
, 1
] −

rt
[
rt (1− 2p1)− 1 + h′

(
1

1−p1

)
1

(1−p1)2

]

rtp1 (1− p1) + 1− p1 + h
(

1
1−p1

)

=
1

p1 (1− p1)
−
rη
(

1
1−p1

)
σ
(

1
1−p1

)

1− p1
−
rη
(

1
p1

)
σ
(

1
p1

)

p1

+
rt
[
rt (1− 2p1) + 1− h′

(
1
p1

)
1
p2

1

]

rtp1 (1− p1) + p1 + h
(

1
p1

) −
rt
[
rt (1− 2p1)− 1 + h′

(
1

1−p1

)
1

(1−p1)2

]

rtp1 (1− p1) + 1− p1 + h
(

1
1−p1

) . (A7)
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Under the assumption that rη
(

1
pi

)
σ
(

1
pi

)
≤ 1 for all pi, the first line of (A7) is non-negative. The second line of

(A7) is strictly positive if

rt [rt (1− 2p1)]

rtp1 (1− p1) + p1 + h
(

1
p1

) −
rt [rt (1− 2p1)]

rtp1 (1− p1) + 1− p1 + h
(

1
1−p1

) ≥ 0⇔

(1− 2p1)

[
1− p1 + h

(
1

1− p1

)
− p1 − h

(
1
p1

)]
= (1− 2p1)2 + (1− 2p1)

∫ 1
1−p1

1
p1

h′ (z) dz ≥ 0.

But, since h′ < 0, the last inequality holds for all p1 ∈ [0, 1] (with equality if, and only if, p1 = 0.5).

Proof of Proposition 8

Under the assumption that v1 = v2, (A6) simplifies to rt (v − y∗i ) p
∗
i (1− p∗i ) =

[
p∗i + h

(
1
p∗
i

)]
y∗i . Since the

expression in square brackets is strictly increasing in p∗i and since p∗1 (1− p∗1) = p∗2 (1− p∗2) , the equality implies

that p∗1 > p
∗
2 ⇔ y

∗
1 < y

∗
2 . Moreover, since

[
p∗i + h

(
1
p∗
i

)]
y∗i = C (s∗i , p

∗
i ), it also implies that y∗1 < y

∗
2 ⇔

C (s∗1, p
∗
1) > C (s∗2, p

∗
2). This proves part (i). Next turn to part (ii). By taking logs of the three equations (22) and

Υ(p∗1) = 0, we have

ln r + ln t+ ln (v1 − y
∗
1) + ln p∗1 + ln (1− p∗1) = ln

[
p∗1 + h

(
1
p∗1

)]
+ ln y∗1 , (A8)

ln r + ln t+ ln (v2 − y
∗
2) + ln p∗1 + ln (1− p∗1) = ln

[
1− p∗1 + h

(
1

1− p∗1

)]
+ ln y∗2 , (A9)

ln p∗1 + lnw2 + r ln f

[
h

(
1

1− p∗1

)
, 1

]
+ rt ln y∗2 = ln (1− p∗1) + lnw1 + r ln f

[
h

(
1
p∗1

)
, 1

]
+ rt ln y∗1 . (A10)

Now set v1 = v2 = v in (A8) and (A9). Then differentiate (A8) with respect to w1:

−
1

v − y∗1

∂y∗1
∂w1

+

[
1
p∗1
−

1
1− p∗1

]
∂p∗1
∂w1

=
1− h′

(
1
p∗1

)
1

(p∗1)2

p∗1 + h
(

1
p∗1

) ∂p∗1
∂w1

+
1
y∗1

∂y∗1
∂w1
⇔

[
1− 2p∗1
p∗1 (1− p∗1)

]
∂p∗1
∂w1

=

1
p∗1

[
p∗1 + σ

(
1
p∗1

)
h
(

1
p∗1

)]

p∗1 + h
(

1
p∗1

) ∂p∗1
∂w1

+
v

y∗1 (v − y∗1)
∂y∗1
∂w1
⇔

[
1− 2p∗1
1− p∗1

]
∂p∗1
∂w1

w1

p∗1
=
p∗1 + σ

(
1
p∗1

)
h
(

1
p∗1

)

p∗1 + h
(

1
p∗1

) ∂p∗1
∂w1

w1

p∗1
+

v

v − y∗1

∂y∗1
∂w1

w1

y∗1
⇔

[
1− 2p∗1 −A1 (1− p∗1)

1− p∗1

]
∂p∗1
∂w1

w1

p∗1
=

v

v − y∗1

∂y∗1
∂w1

w1

y∗1
, (A11)

where A1
def
=
[
p∗1 + σ

(
1
p∗1

)
h
(

1
p∗1

)]
/
[
p∗1 + h

(
1
p∗1

)]
. Similarly, by differentiating (A9) with respect to w1 and

then rewriting, we obtain the following equality (the derivation is very similar to the one above):
[

1− 2p∗1 +A2p
∗
1

1− p∗1

]
∂p∗1
∂w1

w1

p∗1
=

v

v − y∗2

∂y∗2
∂w1

w1

y∗2
, (A12)

where A2
def
=
[
1− p∗1 + σ

(
1

1−p∗1

)
h
(

1
1−p∗1

)]
/
[
1− p∗1 + h

(
1

1−p∗1

)]
. Finally differentiate (A10) with respect to

w1:

1
p∗1

∂p∗1
∂w1

+
rf1

[
h
(

1
1−p∗1

)
, 1
]
h′
(

1
1−p∗1

)
1

(1−p∗1)2

f
[
h
(

1
1−p∗1

)
, 1
] ∂p∗1

∂w1
+ rt

1
y∗2

∂y∗2
∂w1

= −
1

1− p∗1

∂p∗1
∂w1

+
1
w1
−
rf1

[
h
(

1
p∗1

)
, 1
]
h′
(

1
p∗1

)
1

(p∗1)2

f
[
h
(

1
p∗1

)
, 1
] ∂p∗1

∂w1
+ rt

1
y∗1

∂y∗1
∂w1
⇔
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1
p∗1 (1− p∗1)

∂p∗1
∂w1
−
rη
(

1
1−p∗1

)
σ
(

1
1−p∗1

)

1− p∗1

∂p∗1
∂w1

+ rt
1
y∗2

∂y∗2
∂w1

=
1
w1

+
rη
(

1
p∗1

)
σ
(

1
p∗1

)

p∗1

∂p∗1
∂w1

+ rt
1
y∗1

∂y∗1
∂w1
⇔




1− rη

(
1

1−p∗1

)
σ
(

1
1−p∗1

)
p∗1 − rη

(
1
p∗1

)
σ
(

1
p∗1

)
(1− p∗1)

p∗1 (1− p∗1)



 ∂p
∗
1

∂w1
+ rt

1
y∗2

∂y∗2
∂w1

=
1
w1

+ rt
1
y∗1

∂y∗1
∂w1
⇔

1−B
1− p∗1

∂p∗1
∂w1

w1

p∗1
+rt
∂y∗2
∂w1

w1

y∗2
= 1+rt

∂y∗1
∂w1

w1

y∗1
, where B0

def
= rη

(
1

1− p∗1

)
σ

(
1

1− p∗1

)
p∗1+rη

(
1
p∗1

)
σ

(
1
p∗1

)
(1− p∗1) .

(A13)
Now evaluate the three equations (A11)-(A13) above at w1 = w2 (all expressions below, until the end of the proof,
are evaluated at symmetry, even though this is not everywhere explicitly indicated):

−A
∂p∗1
∂w1

w1

p∗1
=

v

v − y∗
∂y∗1
∂w1

w1

y∗
, A

∂p∗1
∂w1

w1

p∗1
=

v

v − y∗
∂y∗2
∂w1

w1

y∗
, 2 (1−B)

∂p∗1
∂w1

w1

p∗1
+ rt
∂y∗2
∂w1

w1

y∗
= 1 + rt

∂y∗1
∂w1

w1

y∗
,

where A
def
= [1 + 2σ (2)h (2)] / [1 + 2h (2)] and B

def
= rη (2) σ (2). Solving this equation system yields

∂p∗1
∂w1

w1

p∗1
=

1

2
[
1−B + rtA v−y

∗

v

] ,
∂y∗1
∂w1

w1

y∗
= −

A v−y
∗

v

2
[
1−B + rtA v−y

∗

v

] ,
∂y∗2
∂w1

w1

y∗
=

A v−y
∗

v

2
[
1−B + rtA v−y

∗

v

] .

(A14)
From these results, most of the comparative statics claims follow. To prove the only remaining claim, the one

about the all-pay investments, note that the relationship x∗1 = h
(

1
p∗1

)
y∗1 implies that (at symmetry)

∂x∗1
∂w1

w1

x∗
= σ (2)

∂p∗1
∂w1

w1

p∗1
+
∂y∗1
∂w1

w1

y∗
=

σ (2)−A v−y
∗

v

2
[
1−B + rtA v−y

∗

v

] . (A15)

Thus,
∂x∗1
∂w1
> 0⇔ σ (2) > A

v − y∗

v
=

1 + 2σ (2)h (2)
1 + 2h(2) + tr

2

⇔ σ (2) >
1

1 + tr
2

=
2

2 + tr
,

where the first equality is obtained by using (22). Similarly, from the relationship x∗2 = h
(

1
1−p∗1

)
y∗2 we have (at

symmetry)

∂x∗2
∂w1

w1

x∗
= −σ (2)

∂p∗1
∂w1

w1

p∗1
+
∂y∗2
∂w1

w1

y∗
=

−σ (2) + A v−y
∗

v

2
[
1−B + rtA v−y

∗

v

] , (A16)

which has the opposite sign to (A15).

Proof of Proposition 9

Equation (A6) can be restated as rt (vi − y∗i ) p
∗
i (1− p∗i ) = C (s∗i , p

∗
i ). Since p

∗
1 (1− p∗1) = p∗2 (1− p∗2) , the equality

implies that v1 − y∗1 > v2 − y
∗
2 ⇔ C (s∗1, p

∗
1) > C (s∗2, p

∗
2). We can also write (A6) as rt

(
vi
y∗
i
− 1
)
p∗i (1− p∗i ) =

p∗i +h
(

1
p∗
i

)
. Since the right-hand side is strictly increasing in p∗i and since p∗1 (1− p∗1) = p∗2 (1− p∗2) , the equality

implies that p∗1 > p
∗
2 ⇔

y∗1
v1
<
y∗2
v2
.

Proof of Proposition 10

The Cobb-Douglas specification (Assumption 4) implies h (m) = α
β
m−1. By using this in (22), we get

v1 − y
∗
1 =

v1
(
p+ α

β
p
)

rtp (1− p) + p+ α
β
p

=
v1
t
β

rt (1− p) + t
β

=
v1

rβ (1− p) + 1
, (A17)

v2 − y
∗
2 =

v2
[
1− p+ α

β
(1− p)

]

rtp (1− p) + 1− p+ α
β

(1− p)
=
v2
t
β

rtp+ t
β

=
v2

rβp+ 1
. (A18)

Moreover, it follows from (A6) that the expected total equilibrium expenditures can be written as R = rtp1 (1− p1)×
[(v1 − y∗1) + (v2 − y∗2)]. Plugging (A17) and (A18) into this expression yields the expression for R stated in (23).

26



Next, taking logs of both sides of (23), we can write

lnR = ln rt+ ln p1 + ln (1− p1) + ln {rβ [p1v1 + (1− p1) v2] + v1 + v2}

− ln [rβ (1− p1) + 1]− ln (rβp1 + 1)

Differentiating yields:

∂ lnR
∂p1

=
1
p1
−

1
1− p1

+
rβ (v1 − v2)

rβ [p1v1 + (1− p1) v2] + v1 + v2
+

rβ

rβ (1− p1) + 1
−

rβ

rβp1 + 1

=
1− 2p1
p1 (1− p1)

+
rβ (v1 − v2)

rβ [p1v1 + (1− p1) v2] + v1 + v2
+

(rβ)2 (2p1 − 1)

(rβ)2 p1 (1− p1) + rβ + 1

=
(1− 2p1) (rβ + 1)

p1 (1− p1)
[
(rβ)2 p1 (1− p1) + rβ + 1

] +
rβ (v1 − v2)

rβ [p1v1 + (1− p1) v2] + v1 + v2
def
= z (p1) . (A19)

First consider the case v1 = v2. Then it is clear from inspection that (A19) is positive for p1 < 1
2 and negative

for p1 > 1
2 . Hence, p̂1 = 1

2 . Next consider the case v1 > v2. The derivative w.r.t. p1 of the first term in (A19) is
strictly negative:

∂T (p1)
∂p1

= (rβ + 1)
−2p1 (1− p1)

[
(rβ)2 p1 (1− p1) + rβ + 1

]
− (1− 2p1)2

[
2 (rβ)2 p1 (1− p1) + rβ + 1

]

p21 (1− p1)2
[
(rβ)2 p1 (1− p1) + rβ + 1

]2 < 0,

(A20)
where T is short-hand notation for the first term in (A19). Moreover, by inspection, the second term in (A19) is
strictly decreasing in p1. Therefore, ∂2 lnR/∂p2

1 < 0. Moreover, evaluated at p1 = 1
2 , the expression in (A19) is

strictly positive, whereas it approaches −∞ as p1 → 1. It follows that p̂1 ∈
(

1
2 1
)
. In particular, for any v1 ≥ v2,

p̂1 is characterized by z (p̂1) = 0.
One can verify that z (p1) is strictly increasing in v1 and strictly decreasing in v2. Hence, ∂p̂1/∂v1 > 0 and

∂p̂1/∂v2 < 0 (the former result will also follow from computations shown below). In order to do comparative
statics w.r.t. rβ, differentiate the first term of z (p1) w.r.t. rβ:

(1− 2p1)
p1 (1− p1)

(rβ)2 p1 (1− p1) + rβ + 1− (rβ + 1) [2rβp1 (1− p1) + 1]
[
(rβ)2 p1 (1− p1) + rβ + 1

]2

=
− (1− 2p1)
p1 (1− p1)

p1 (1− p1) rβ [2 (rβ + 1)− rβ]
[
(rβ)2 p1 (1− p1) + rβ + 1

]2 = −
(1− 2p1) rβ (rβ + 2)

[
(rβ)2 p1 (1− p1) + rβ + 1

]2 .

Then differentiate the second term of z (p1) w.r.t. rβ:

(v1 − v2)
rβ [p1v1 + (1− p1) v2] + v1 + v2 − rβ [p1v1 + (1− p1) v2]

{rβ [p1v1 + (1− p1) v2] + v1 + v2}
2 =

(v1 − v2) (v1 + v2)

{rβ [p1v1 + (1− p1) v2] + v1 + v2}
2 .

Thus, if v1 = v2, then z (p1) is constant w.r.t. rβ and ∂p̂1/∂ (rβ) = 0. And if v1 > v2, then z (p1) is strictly
increasing in v1 and ∂p̂1/∂ (rβ) > 0.

Given the Cobb-Douglas specification in Assumption 4, the equation Υ(p∗1) = 0, which defines the equilibrium
value of p1, becomes

w2v
rt
2

w1v
rt
1
p1
[(
α
β

)α
(1− p1)α

]r

[
rtp1 (1− p1) + 1− p1 + α

β
(1− p1)

]rt =
(1− p1)

[(
α
β

)α
pα1
]r

[
rtp1 (1− p1) + p1 + α

β
p1
]rt ⇔

w2v
rt
2

w1v
rt
1
p1 (1− p1)rα

(1− p1)rt
(
rtp1 + 1 + α

β

)rt =
prα1 (1− p1)

prt1
[
rt (1− p1) + 1 + α

β

]rt ⇔

w2v
rt
2

w1v
rt
1
p1+rβ

1
(
rtp1 + t

β

)rt =
(1− p1)1+rβ

[
rt (1− p1) + t

β

]rt ⇔

w1 = w2

[
p1

1− p1

]1+rβ [r (1− p1) + 1
β

rp1 + 1
β

v2
v1

]rt
= w2

[
p1

1− p1

]1+rβ [
rβ (1− p1) + 1
rβp1 + 1

v2
v1

]rt
,

which gives us (24). The result that limv1→∞ p̂1 < 1 follows from inspection of (A19): z (p̂1) = 0 is inconsistent
with limv1→∞ p̂1 = 1. Similarly, the result that limv1→∞ ŵ1 = 0 follows from (24) and the fact that limv1→∞ p̂1 <

1.
It remains to prove the last limit result stated in the proposition. In order to do that, we must first derive
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the value of limv1→v2 ∂p̂1/∂v1. To this end, differentiate both sides of z (p̂1) = 0, to obtain:

∂T (p̂1)
∂p1

∂p̂1
∂v1
−

(rβ)2 (v1 − v2)2

[rβ [p̂1v1 + (1− p̂1) v2] + v1 + v2]2
∂p̂1

∂v1
+
rβ {rβ [p̂1v1 + (1− p̂1) v2] + v1 + v2 − (v1 − v2) (rβp̂1 + 1)}

[rβ [p̂1v1 + (1− p̂1) v2] + v1 + v2]2
= 0.

(A21)
The numerator of the last term simplifies to rβ (rβ + 2) v2 > 0. Since we also know, from above, that ∂T (p̂1) /∂p1 <

0, it follows that ∂p̂1/∂v1 > 0. Next, take the limit v1 → v2 of both sides of (A21):
[

lim
v1→v2

∂T (p̂1)
∂p1

][
lim
v1→v2

∂p̂1

∂v1

]
+
rβ (rβ + 2) v2

[rβv2 + v2 + v2]2
= 0.

From (A20) we also have

lim
v1→v2

∂T (p̂1)
∂p1

= (rβ + 1)
−8
[(
rβ
2

)2
+ rβ + 1

]

[(
rβ
2

)2
+ rβ + 1

]2 = −
8 (rβ + 1)

(
rβ
2

)2
+ rβ + 1

= −
32 (rβ + 1)

(rβ + 2)2 .

Thus, limv1→v2
∂p̂1
∂v1

=
[
− rβ(rβ+2)v2

(rβ+2)2v2
2

]
/
[
− 32(rβ+1)

(rβ+2)2

]
= rβ(rβ+2)

32(rβ+1)v2
. We can now prove the last limit result stated in

the proposition. Take logs of (24) and evaluate at p = p̂1:

ln ŵ1 = lnw2 − (1 + rβ) ln (1− p̂1) + (1 + rβ) ln p̂1 − rt ln (rβp̂1 + 1) + rt ln [rβ (1− p̂1) + 1]− rt ln v1 + rt ln v2.

Differentiate both sides w.r.t. v1:

1
ŵ1

∂ŵ1

∂v1
=

[
1 + rβ
1− p̂1

+
1 + rβ
p̂1

−
tr2β

rβp̂1 + 1
−

tr2β

rβ (1− p̂1) + 1

]
∂p̂1
∂v1
−
rt

v1

=

[
1 + rβ

(1− p̂1) p̂1
−

tr2β (rβ + 2)
(rβp̂1 + 1) [rβ (1− p̂1) + 1]

]
∂p̂1
∂v1
−
rt

v1
.

Next take the limit v1 → v2 of both sides:

lim
v1→v2

[ 1
ŵ1

] [
lim
v1→v2

∂ŵ1

∂v1

]
=

[

4 (1 + rβ)−
tr2β (rβ + 2)(
rβ
2 + 1

) (
rβ
2 + 1

)

][
lim
v1→v2

∂p̂1
∂v1

]
−
rt

v2
⇔

1
w2

lim
v1→v2

∂ŵ1

∂v1
= 4

[
(1 + rβ)−

tr2β (rβ + 2)

(rβ + 2)2

]
rβ (rβ + 2)

32 (rβ + 1) v2
−
rt

v1

=
rβ (rβ + 2)

8v2
−
rt

v2
−

tr3β2

8 (rβ + 1) v2
=
rβ (rβ + 2)

8v2
−
rt
[
8 (rβ + 1) + (rβ)2

]

8 (rβ + 1) v2
.

Thus,

lim
v1→v2

∂ŵ1

∂v1
< 0⇔

rβ (rβ + 2)
8v2

<
rt
[
8 (rβ + 1) + (rβ)2

]

8 (rβ + 1) v2
⇔

β

α+ β
<

8 (rβ + 1) + (rβ)2

(rβ + 2) (rβ + 1)
=

5rβ + 6
(rβ + 2) (rβ + 1)

+ 1,

which always holds.
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