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Abstract

The role of cointegration is analysed for optimal hedging of an h-period portfolio.
Prices are assumed to be generated by a cointegrated vector autoregressive model al-
lowing for stationary martingale errors, satisfying a mixing condition and hence some
heteroscedasticity. The risk of a portfolio is measured by the conditional variance of the
h-period return given information at time t. If the price of an asset is nonstationary,
the risk of keeping the asset for h periods diverges for large h. The h−period minimum
variance hedging portfolio is derived, and it is shown that it approaches a cointegrat-
ing vector for large h, thereby giving a bounded risk. Taking the expected return into
account, the portfolio that maximizes the Sharpe ratio is found, and it is shown that
it also approaches a cointegration portfolio. For constant conditional volatility, the
conditional variance can be estimated, using regression methods or the reduced rank
regression method of cointegration. In case of conditional heteroscedasticity, how-
ever, only the expected conditional variance can be estimated without modelling the
heteroscedasticity. The findings are illustrated with a data set of prices of two year
forward contracts for electricity, which are hedged by forward contracts for fuel prices.
The main conclusion of the paper is that for optimal hedging, one should exploit the
cointegrating properties for long horizons, but for short horizons more weight should
be put on the remaining dynamics.
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1 Introduction, some notation and summary
1.1 Motivation for the problem investigated

The use of cointegration for analyzing financial data is well established over the last 20
years. The problem of price discovery is discussed by Hasbrouck (1995), Lehmann (2002), de
Jong and Schotman (2010), and Grammig, Melvin, and Schlag (2005). Gatev, Goetzmann,
and Rouwe (2006) study pairs trading, and continuous time models with a heteroscedastic
error process are developed by Duan and Pliska (2004) and Nakajima and Ohashi (2011).
Alexander (1999), and more recently Juhl, Kawaller, and Koch (2012), studied optimal
hedging using cointegration. The idea of a minimum variance portfolio dates back to the
seminal paper by Markowitz (1952) and has since been explored and extended in both the
financial and econometric literature, see for instance Grinold and Kahn (1999).
In general, the hedging methods can be divided in two classes: static and dynamic

methods. The static hedging techniques assume that the hedging portfolio is selected, given
information available in period t, and remains unchanged during the entire holding period
t+1, . . . , t+h. This is opposed to the dynamic hedging methods which allows for rebalancing
the portfolio during the holding period, but we are only concerned with static hedging.
This paper studies optimal hedging for an h-period investment. It is assumed that there

are n assets with prices yt = (y1t, . . . , ynt)
′, and that the first asset is held for h periods,

using the other assets to hedge the risk, as measured by conditional variance of returns
Σt,h = V art(yt+h − yt) given information at time t, that is ys, s = 1, . . . , t.
The cointegrated vector autoregressive model (CVAR) with a restricted constant term

and an error term that allows for heteroscedasticity is assumed to describe the variation of
the prices. This model allows for nonstationary prices with stationary linear combinations,
that is cointegration.
The first set of results concerns the derivation of an expression for the risk, Σt,h, which

depends on conditional volatility of the error term. Based on this expression, the optimal
h−period hedging portfolio, which minimizes this risk is derived. The limit for h → ∞ of
the inverse risk matrix, Σ−1t,h , is found and used to show that the optimal portfolio approaches
a variance minimal cointegrating portfolio, which has a bounded risk.
Thus for longer horizons we should choose the variance minimal cointegrating portfolio,

which has a bounded risk, and for shorter horizons we should take conditional volatility into
account.
The second set of results concerns estimation of risk, and the optimal h-period hedging

portfolio based on data yt, t = 1, . . . , T . Under assumptions on the error term that allows for
heteroscedasticity, we show two results. First we show that a regression of returns yt+h − yt
on information at time t gives a consistent estimator for Σh, and a similar result holds if the
CVAR is estimated by reduced rank regression. Next it is shown that a regression of y1t on
the other prices and a constant gives a consistent estimator of the optimal limiting hedging
portfolio.
The conclusion of this is, that if the conditional variance is used as risk measure, in

the case of conditional volatility, this has to be modelled by a multivariate GARCH model,
like the BEKK model, see for instance Engle and Kroner (1995) and Comte and Lieberman
(2003), or a multivariate ARCH model like Li, Ling, and Wong (2001). The combined
theory of cointegration and a model for heteroscedasticity is challenging. The obvious two-
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step procedure of first estimating the CVAR assuming i.i.d. Gaussian errors and then use
the estimated residuals as input in a BEKK model has not been work out in details.
The well-known formula

V ar(yt+h − yt) = E(V art(yt+h − yt)) + V ar(Et(yt+h − yt)),

shows that the choice between the conditional variance, Σh,t and its expectation, Σh, does
not involve the variation of the information yt given at the time of investment.
If a consistent estimator of Σt,h = V art(yt+h−yt) is needed, one has to model conditional

volatility, but if the first term Σh = E(V art(yt+h − yt)) can be used, it can be estimated by
the simple regression methods or from the CVAR.
The role of cointegration for hedging was analysed by Juhl, Kawaller, and Koch (2011).

They considered a special case of the CVAR, and we want in this paper to generalize their
results to a CVAR with more lags and more cointegrating relations and allow for a some
degree of heteroscedasticity in the martingale error term.
Finally we analyze some daily data for futures of electricity prices, and compare the opti-

mal hedging portfolio with the cointegrating portfolio. All proofs are given in the Appendix.
We conclude that cointegration plays an important role in hedging. It allows for the

possibility that an h-period hedging portfolio has a risk that is bounded in the horizon h,
as opposed to the unhedged risk. As important is the result that for moderate horizons, it
is important not to use the cointegrating portfolio, but to use the optimal hedging portfolio
which interpolates between the short and long-horizon cointegrating portfolio.

2 Optimal hedging in the CVAR with ergodic, mixing, martingale
difference error terms

The results are formulated in Theorem 2 for the cointegrated VAR (CVAR) model with two
lags

∆yt = α(β′yt−1 − ξ) + Γ1∆yt−1 + εt. (1)

It is only a question of a more elaborate notation to handle the case of more lags using the
companion form, see the proof of Theorem 2.
We formulate the assumptions on the parameters of the data generating process, see

Johansen (1996, Theorem 4.2), and define the characteristic polynomial for the lag two
model, Ψ(z) = (1 − z)In − Πz − Γ1z(1 − z). In the following we define a⊥, which for any
n×m matrix, a, of rank m < n is defined as an n× (n−m) matrix of rank n−m, for which
a′a⊥ = 0.

Assumption 1 The roots of det Ψ(z) = 0 satisfy |z| > 1 or z = 1, and Π = αβ′, where α
and β are n× r matrices of full rank r < n. The matrix α′⊥(In − Γ1)β⊥ has full rank, and

C = β⊥(α′⊥(In − Γ1)β⊥)−1α′⊥. (2)

Next we formulate the assumptions on the error term.

Assumption 2 The innovations, εt, form an ergodic martingale difference sequence with
respect to a filtration Ft, t = · · · − 1, 0, 1, . . . , satisfying for some δ > 0

Et(εt+1) = E(εt+1|Ft) = 0, E||εt||4+δ ≤ c <∞, (3)
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and a mixing condition

Et(εt+hε
′
t+h)

P→ Ω = E(εtε
′
t) > 0, h→∞. (4)

Note that the condition of constant conditional volatility, Et(εt+1ε′t+1) = Ω, implies (4)
and if further the errors are i.i.d.(0,Ω) with 4 + δ moments, then also (3) is satisfied.
Suppose Assumptions 1 and 2 hold, then we find from the theory of the CVAR, that yt is

a nonstationary process, whereas ∆yt and β′yt are stationary. For the CVAR, we can find an
expression for the conditional mean and variance of the h period return given information at
time t, and therefore analyze analytically the role of cointegration for the optimal h period
portfolio, in particular the limit behaviour for h→∞, but first we discuss optimal hedging.
2.1 Optimal hedging

Let yt = (y1t, y2t, . . . , ynt)
′ denote prices of assets 1, 2, . . . , n, and let η = (η1, . . . , ηn)′ denote

portfolio weights, such that η′yt is the price of the portfolio. We define conditional expected
return µt,h = Et(yt+h−yt) and conditional variance Σt,h = V art(yt+h−yt) given information
at time t and use the notation Σh = E(Σt,h). We formulate the optimization problem, see
Markowitz (1952), as minimizing conditional variance of the return η′(yt+h − yt), that is
η′Σt,hη, under the constraint that a′η = 1, for some vector a ∈ Rn. In particular, for
a = en1 = (1, 0′n−1)

′ we find the optimal hedging portfolio, and for a = µt,h we find the
optimal portfolio in the sense of Markowitz. This portfolio also maximizes (squared) Sharpe
ratio (η′µt,h)

2/η′Σt,hη, see Theorem 4.
Using the notation Σ, minimization of η′Ση under the constraint a′η = 1, is solved by

the Lagrange multiplier problem

∂

∂η
: η′Ση − 2λ(η′a− 1) = 0,

giving
ηopt = Σ−1a/a′Σ−1a, (5)

with risk
η′optΣηopt = (a′Σ−1a)−1.

For hedging, a = en1. A different expression is found using

In = ΣΣ−1 =

(
Σ11 Σ12

Σ21 Σ22

)(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ22 is (n− 1)× (n− 1). It follows that Σ21Σ
11 + Σ22Σ

21 = 0, or

Σ21/Σ11 = −Σ−122 Σ21. (6)

The optimal hedging portfolio is denoted ηopt, and is given by

ηopt = Σ−1en1/e
′
n1Σ

−1en1 =

(
Σ11

Σ21

)
/Σ11 =

(
1

Σ21/Σ11

)
=

(
1

−Σ−122 Σ21

)
. (7)
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Thus, applying this to Σt,h, the price of the optimal h−period hedging portfolio, η∗t,h, is given
by two expressions

η∗′t,hyt = y′tΣ
−1
t,hen1/e

′
n1Σ

−1
t,hen1 = y1t − Σt,h,12Σ

−1
t,h,22(y2t, . . . , ynt)

′. (8)

It turns out that the formulation (5) is more convenient for asymptotic analysis, which
consists of finding the limit of Σ−1t,h for h→∞, see Lemma 1, whereas the second shows that
the coeffi cient can be found as a regression coeffi cient, Σt,h,12Σ

−1
t,h,22.

2.2 Properties of the CVAR

Here some results for the solution, yt, of equation (1) are collected. Expressions for condi-
tional variance, Σt,h, its expectation Σh = E(Σt,h), and conditional mean return, µt,h, are
given, and the main limit result for the inverse conditional variance is proved using Lemma
1. To simplify the notation, we analyse a lag one model, and apply these results later to a
lag two model in companion form.

Theorem 1 Let Assumptions 1 and 2 be satisfied, and let yt ∈ Rn, t = 1, . . . , T, be given by

∆yt = α(β′yt−1 − ξ) + εt. (9)

The solution satisfies for ρ = Ir + β′α,

β′yt =
∞∑
i=0

ρiβ′εt−i + ξ, (10)

yt+h − yt =
h−1∑
i=0

{C + α(β′α)−1ρiβ′}εt+h−i + α(β′α)−1(ρh − Ir)(β′yt − ξ). (11)

It follows that yt+h − yt has conditional mean

µt,h = Et(yt+h − yt) = α(β′α)−1(ρh − Ir)(β′yt − ξ), (12)

and conditional variance

Σt,h = V art(yt+h − yt) =
h−1∑
i=0

{C + α(β′α)−1ρiβ′}Etεt+h−iε′t+h−i{C ′ + βρ′i(α′β)−1α′}, (13)

with expectation Σh = E(Σt,h) given by

Σh =
h−1∑
i=0

{C + α(β′α)−1ρiβ′}Ω{C ′ + βρ′i(α′β)−1α′}. (14)

For h→∞, the limit behaviour of Σt,h is given by

β′Σt,hβ
P→ V ar(β′yt), h

−1β′⊥Σt,hβ⊥
P→ β′⊥CΩC ′β⊥, β

′
⊥Σt,hβ = OP (1), (15)

and it follows that
Σ−1t,h

P→ βV ar−1(β′yt)β
′. (16)

The same results hold for Σh = E(Σh,t),

Σ−1h → βV ar−1(β′yt)β
′.
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2.3 Optimal hedging in the CVAR

The main result for the hedging problem in the CVAR with ergodic, mixing, martingale
difference sequence as error term is given for the two lag model. It is assumed that parameters
and hence conditional mean and variance are known, and we return in Section 3 to the
question of how to estimate these quantities based on data y1t, t = 1, . . . , T . Because the
first coordinate of the portfolio has a special role, η1 = 1, we introduce the notation

Σt,h =

(
Σt,h,11 Σt,h,12

Σt,h,21 Σt,h,22

)
.

Theorem 2 Let yt be given by model (1), and let Assumption 1 and 2 hold. The optimal
hedging portfolio, η∗t,h, and its limit if β

′en1 6= 0, are given by

η∗t,h = (1,−Σt,h,12Σ
−1
t,h,22)

′ =
Σ−1t,hen1

e′n1Σ
−1
t,hen1

P→
βΦ−1βββ

′en1

e′n1βΦ−1βββ
′en1

, (17)

where Φββ = V ar(β′yt). The limits for h → ∞ of conditional mean return and risk of the
optimal hedging portfolio are

η∗′t,hµt,h
P→ −

e′n1βΦ−1ββ (β′yt − ξ)
e′n1βΦ−1βββ

′en1
, (18)

η∗′t,hΣt,hη
∗
t,h

P→ (e′n1βΦ−1βββ
′en1)

−1. (19)

Finally, if e′n1β 6= 0 and e′n1β⊥ 6= 0, the fraction of explained variation, R2t,h, satisfies

1−R2t,h =
(e′n1Σ

−1
t,hen1)

−1

e′n1Σt,hen1

P→ 0, for h→∞. (20)

The limit results are the same, if we replace Σt,h by its expectation Σh = E(Σt,h).

The limit expression in (17) for η∗t,h shows explicitly how cointegrating vectors, β, should
be combined by their variance Φββ = V ar(β′yt) to give the optimal hedging portfolio for
large horizons.
Another expression for the optimal portfolio, η∗t,h, can be found by normalizing the coin-

tegrating relations such that

β =

(
1 0′r−1
β1 β2

)
.

In this case

Φββ =

(
V ar(y1t + β′1y2t) Cov(y1t + β′1y2t, β

′
2y2t)

Cov(β′2y2t, y1t + β′1y2t) V ar(β′2y2t)

)
=

(
Φ11 Φ12

Φ21 Φ22

)
,

say, and the limit of the optimal portfolio can be expressed as

βΦ−1βββ
′en1

e′n1βΦ−1βββ
′en1

=

(
1 0′r−1
β1 β2

)
Φ−1ββ

(
1

0r−1

)
/Φ11

=

(
1 0′r−1
β1 β2

)(
1

−Φ−122 Φ21

)
=

(
1

β1 − β2Φ−122 Φ21

)
,
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see (7).
The results in Theorem 2 can be interpreted as follows. For h = 1, the optimal hedg-

ing portfolio depends only on the conditional error variance is Σt,1 = V art(∆yt+1) =
Etεt+1ε

′
t+1, and cointegration plays no role. The minimal conditional variance is Σt,1,11 −

Σt,1,12Σ
−1
t,1,22Σt,1,21 < Σt,1,11, where Σt,1,11 is the risk of asset one.

For any h, the risk of the optimal portfolio is

(e′n1Σ
−1
t,hen1)

−1 = (Σ11
t,h)
−1 = Σt,h,11 − Σt,h,21Σ

−1
t,h,22Σt,h,21 < Σt,h,11 = e′n1Σt,hen1, (21)

where Σt,h,11 is the risk of asset one, which diverges to infinity for large h, if the price of
asset one is nonstationary, that is e′n1β⊥ 6= 0, whereas the risk of the optimal portfolio stays

bounded, if e′n1β 6= 0, so a lot is gained by hedging. In this case R2t,h
P→ 1, see Juhl, Kawaller,

and Koch (2012, p. 838), for a discussion of R2 > 0.8 as a necessary condition to qualify
for hedge accounting treatment. By the optimal hedging portfolio, the risk is reduced by
Σt,h,12Σ

−1
t,h,22Σt,h,21 > 0, see (21), and the conditional mean return is changed, but there is

no simple comparison between the conditional mean returns for h = 1, and the limit for
h→∞.
Note that the optimal portfolio converges to a cointegrating portfolio, that is, a linear

combination of the columns of β, see (17). The result in (17) is invariant to the choice of
normalization, because it depends only on β(V ar(β′yt))

−1β′, which is invariant under the
transformation β → βκ for any full rank r × r matrix κ.
A different interpretation of the limit, as an optimal cointegrating portfolio of the form

η = βψ, where ψ ∈ Rr, is given next.

Theorem 3 Under Assumptions 1 and 2, and if β′en1 6= 0, the optimal cointegrating hedging
portfolio, βψ∗t,h, and its limit are

βψ∗t,h =
β(β′Σt,hβ)−1β′en1

e′n1β(β′Σt,hβ)−1β′en1

P→
βΦ−1βββ

′en1

e′n1βΦ−1βββ
′en1

, for h→∞. (22)

Note that the limit is the same as in (17), and therefore the limits of the conditional expected
return ψ∗′t,hβ

′µt,h and conditional variance ψ∗′t,hβ
′Σt,hβψ

∗
t,h are given in (18) and (19).

The optimization of the squared h-period Sharpe ratio, see Sharpe (1966), defined by

Sh(η) =
[Et{η′(yt+h − yt)}]2
V art(η′(yt+h − yt))

=
(η′µt,h)

2

η′Σt,hη
, (23)

is analysed in the next Theorem.

Theorem 4 Under Assumptions 1 and 2, the portfolio which maximizes the Sharpe ratio
after h periods, η†t,h, and its limit are given, up to a constant factor, by

η†t,h = Σ−1t,hµt,h
P→ −βΦ−1ββ (β′yt − ξ). (24)

The maximizing cointegrating portfolio and its limit are given up to a constant factor by

βψ†t,h = β(β′Σt,hβ)−1β′µt,h
P→ −βΦ−1ββ (β′yt − ξ). (25)
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3 Estimation results
The results above show how to determine optimal portfolios, if parameters and hence con-
ditional mean and variance are known. In practice, one would have to estimate parameters
and conditional mean and variance of returns. The parameters θ = (α, β,Γ1, ξ) and Ω can
be estimated using the Gaussian quasi-likelihood, which assumes i.i.d. N(0,Ω) errors, that
is by reduced rank regression, see Anderson (1951). In this case the asymptotic properties
of θ̂, Ω̂, and rank test, under Assumptions 1 and 2, are the roughly same as for i.i.d. errors,
see Theorem 5. This means in particular, that a consistent estimator of the limiting optimal
cointegrating hedging portfolio, see (17), can be found. For the conditional variance Σt,h,
only its expectation Σh, can be estimated. For constant conditional volatility, Σt,h is the
same as Σh, but this is not the case if there is heteroscedasticity.
By a regression of the returns y1,t+h−y1,t on returns of the remaining assets and (yt, yt−1, 1),

it is shown that the corresponding estimator Σ̂reg
t,h is consistent for Σh, whereas a regression

of y1,t on the other assets and a constant gives a consistent estimator of the limiting optimal
cointegrating portfolio.

3.1 Estimation of parameters and Σh

Asymptotic properties of the estimated parameters based on quasi-likelihood, which assumes
Gaussian i.i.d. errors, have been analysed under Assumptions 1 and 2 by Cavaliere, Rahbek
and Taylor (2010) and Boswijk, Cavaliere, Rahbek and Taylor (2016), and we formulate their
results in the next theorem.

Theorem 5 Let yt, t = 1, . . . , T, be generated by (1) and assume that Assumptions 1 and
2 hold. Consider the estimators θ̂ = (α̂, β̂, Γ̂1, ξ̂) and Ω̂, derived from the Gaussian quasi-
likelihood that assumes i.i.d. N(0,Ω) errors, that is,

εt(θ) = ∆yt − αβ′yt−1 − Γ1∆yt−1 + αξ, (26)

−2 logL(θ,Ω) = T log det Ω + tr{Ω−1
T∑
t=1

εt(θ)εt(θ)
′}. (27)

Asymptotic properties of T (β̂− β), T 1/2(ξ̂− ξ) and rank test, are the same as asymptotic
properties, when errors are i.i.d. But T 1/2(α̂ − α,Γ1 − Γ1) is asymptotically Gaussian with
a variance that involves the fourth moments of the error term.

Thus, Gaussian quasi-likelihood (27) can be used to estimate parameters consistently. In
particular the optimal limiting cointegrating portfolio given in (17), whereas the conditional
variance (13) contains Etεt+h−1ε′t+h−1, which cannot be estimated without modelling the
error term explicitly, only its expectation Ω can be estimated.

Theorem 6 Let yt, t = 1, . . . , T, be generated by (1) and let Assumptions 1 and 2 hold.
Consider the process yt conditional on initial values y0, y−1.
Let (yt+h− yt|1, yt, yt−1) be the residual of yt+h regressed on (yt, yt−1, 1), t = 1, . . . , T −h.
For fixed h and T →∞,

Sh,T = (T − h)−1
T−h∑
t=1

(yt+h − yt|1, yt, yt−1)(yt+h − yt|1, yt, yt−1)′
P→ Σh. (28)
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If parameters are estimated by reduced rank regression, one obtains similarly for fixed (h, t)
and T →∞,

Σ̂h,t
P→ Σh. (29)

Thus, estimatingΣt,h using the Gaussian quasi-likelihood for i.i.d. innovations, or running

a regression of yt+h− yt on 1, yt, yt−1, implies in both cases that Σ̂t,h
P→ Σh for T →∞. This

has the implication that the optimal h-period portfolio, can only be estimated, if we use Σh

as risk measure.
Next we prove that the limiting optimal h-period portfolio can be estimated by a regres-

sion of y1t on y2t, . . . , ynt, see Theorem 7

Theorem 7 Let yt, t = 1, . . . , T, be generated by (1) and assume that Assumptions 1 and 2
hold and let initial values y0, y−1 be fixed. Let (yt|1) = yt − ȳT , t = 1, . . . , T, and

ST = T−1
T∑
t=1

(yt|1)(yt|1)′. (30)

Then
β′STβ

P→ V ar(β′yt), and S−1T
P→ βV ar(β′yt)

−1β′, T →∞. (31)

Hence, a regression of y1t on (y2t, . . . , ynt), and a constant, for t = 1, . . . , T, gives a consistent
estimator of the limiting (h→∞) optimal hedging portfolio (17).

4 Empirical example
Consider the situation that a producer of electricity enters an agreement to deliver to cus-
tomers two years from today one MWh of electricity every day of the year. Therefore she/he
sells to the customers, today at the price pt, the right to having delivered one MWh of elec-
tricity in two years, that is, a two year forward contract in electricity. The seller is worried
about the risk due to changing fuel prices and decides to hedge these risks by buying two
year futures in the price of fuels. The problem is which amounts, the hedge ratios, should
be bought of the futures to hedge optimally, the risk due to the variation of fuel prices, as
measured by conditional variance. Note that instead of holding the first asset, we are selling
it and buying the hedging assets, but that is just a matter of a change of sign. A detailed
analysis of some aspects of the electricity market in Europe, using cointegration analysis,
can be found in Bosco, Parisio, Pelagatti, and Baldi (2010) and Mohammadi (2009).
Above a theory for this situation has been developed, under the assumption that a

constant parameter model describes the data well, and for which we can assume that the
model parameters remain fixed in the entire period. The model describes a cointegration
relation between electricity and fuels. This theory is applied to a set of data, and it is shown
how in this particular case, the optimal risk change with h.
We take Dutch electricity prices for trades for two year ahead forward contracts for elec-

tricity, pt, and two year futures prices for coalt, gast and CO2t (CO2 is the European Emission
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Allowances for carbon dioxide) which are main determinants of the price of electricity, de-
noted fuels below. The data is from Datastream. The variables yt = (pt, coalt, gast, CO2t)

′

are modelled using a cointegration model with two lags of the form

∆yt = α(β′yt−1 − ξ) + Γ1∆yt−1 + εt, (32)

and we estimate it, using the Gaussian likelihood assuming that εt, t = 1, . . . , T , are indepen-
dent identically distributed N4(0,Ω). Note that in order to interpret a cointegrating relation
as a portfolio, the prices, not the log prices are modelled. The analysis is summarized as
follows.
Time series of the data are presented in Figure 1 and consists of daily observations for

2009. A CVAR with two lags is fitted to the data, and a few dummy variables are needed to
account for outliers at observations (10, 25, 55, 63, 117), using the software CATS in RATS,
Dennis (2006).
A model with two lags is a reasonable description of the data, and we first test for the

number of cointegrating relations. The test for rank is given in Table 2. The test that there
is no cointegration, r = 0, has a p−value 0.028 and is rejected in favor of the hypothesis that
r = 1, with p−value 0.534. This model is estimated and one finds, see Table 2, the three
unit roots imposed and that the remaining are well within the unit circle. There is, however,
a problem with conditional volatility, as is seen from the test for ARCH in Table 2.

ARCH p-value
∆elec 11.591 0.003
coal 14.923 0.001
gas 3.584 0.167
CO2 9.880 0.007

Table 1: The test for ARCH effects for the individual variables indicate that there is condi-
tional heteroscedasticity

There are now two possibilities, one is to model the conditional volatility with a multi-
variate GARCH model, like the BEKK model. The theory for this combination of CVAR
and BEKK has yet to be worked out. Even the two-step procedure of first estimating the
CVAR, using reduced rank regression, and then analysing the estimated residuals by BEKK
model, is challenging. We have instead formulated general assumptions on the error term,
to see how far one can get with the usual cointegration analysis based on reduced rank re-
gression. It was a conclusion of the above analysis that if we are willing to use the expected
conditional variance Σh as risk measure, we can estimate the optimal hedging portfolio.
The estimated cointegrating relation and the adjustment coeffi cients are

β′y = elec.− 0.006
[t=−0.071]

coal −1.143
[t=−9.408]

gas− 1.100
[t=−9.678]

CO2 − 13.792
[t=−3.541]

α′ = (−0.162
[t=−4.495]

, −0.069
[t=−1.244]

, −0.020
[t=−0.970]

, − 0.011
[t=−0.483]

),

It is seen that the coeffi cient to coal is not significant (t = −0.071), and that electricity is
adjusting to the cointegrating relation with coeffi cient −0.162, (t = −4.495).
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Figure 1: The daily prices of a two year forward contract for delivery of electricity and the
prices of coal, gas and CO2 permits

Test for cointegrating rank
r Eig.Value Trace Frac95 P-Value
0 0.124 56.476 53.945 0.028
1 0.048 22.978 35.070 0.534
2 0.030 10.367 20.164 0.610
3 0.010 2.608 9.142 0.661

8 abs(roots) of companion matrix for r = 1
1, 1, 1, 0.864, 0.261, 0.068, 0.068, 0.049

Table 2: The tests for rank indicate that r = 0 can be rejected (p-value 0.028), and that
r = 1 looks acceptable (p-value 0.534). The absolute value of the roots of the companion
matrix consists of three imposed unit roots for r = 1, and the next largest is 0.864.

The estimated cointegrating relation is plotted in Figure 2, and the risk of the optimal
portfolio compared to the stationary portfolio is given in Figure 3. Note that using the
cointegrating relation as a hedging portfolio has a much greater risk than the optimal hedging
portfolio. The unhedged, not shown, risk grows linearly from 0.35 (h = 1) to 13.73 (h = 24),
whereas the optimally hedged risk grows from 0.13 (h = 1) and stays below the limit
Φ = 0.987.

5 Conclusion
The role of cointegration for hedging is analysed for an asset held for h periods. Prices
are assumed generated by a cointegrated vector autoregressive model allowing for stationary
and mixing martingale errors. The risk of a portfolio is measured by conditional variance
of returns given information at time t. For nonstationary prices, the risk of keeping an
asset for h periods diverges for large h. An expression is derived for the minimum variance
hedging portfolio as a function of the holding period, h, and it is shown that it approaches a
cointegrating vector for large h, thereby giving a bounded risk. Taking into account expected
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Figure 2: β′y = elec.− 0.006
[t=−0.071]

coal −1.143
[t=−9.408]

gas− 1.100
[t=−9.678]

CO2− 13.792
[t=−3.541]

Risk of stationary and optimal portfolio
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Figure 3: The risk of the cointegrating portfolio V art(β′yt+h) = β′Σhβ, (– —) and the optimal
risk V art(η∗′h yt+h) = η∗′h Σhη

∗
h, (· · · · · · ) are plotted. They both converge to Φ = 0.987, with

exponential an hyperbolic rates respectively. The unhedged risk (not plotted) for asset one
is Σh11 ≈ 0.35 + 0.58(h− 1), which goes from 0.35 (h = 1) to 13.73 (h = 24).
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return, the portfolio that maximizes the Sharpe ratio is derived. It is shown that this also
approaches a cointegration portfolio, with weights depending on the price of the portfolio.
These results are derived when parameters and hence the conditional variance is known.
If parameters have to be estimated, it is shown that, under Assumption 2, we can es-

timate the expected conditional variance, using either regression methods, or the reduced
rank regression method of cointegration. The conditional variances, however, can only be
estimated if heteroscedasticity is modelled. The results are illustrated with an analysis of
a data set of prices of forward contracts on electricity prices, which are hedged by forward
contracts on fuel prices. The main conclusion of the paper is that for optimal hedging, the
cointegrating properties for long horizons should be exploited, but for short horizons more
weight should be put on the remaining part of the dynamics.
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6 Appendix
The following elementary lemma is used for asymptotic analysis of Σ−1t,h .

Lemma 1 Let for m = 1, 2, . . . , Θm > 0 be a sequence of symmetric stochastic k × k
matrices, and let γ be k × q of rank q < k.
If

γ′Θmγ
P→Φ > 0, (33)

γ′⊥Θmγ⊥
D→Ξ > 0, (34)

γ′Θmγ⊥ =OP (1), (35)

then
Θ−1m

P→ γΦ−1γ′, for m→∞.

Proof of Lemma 1. Let Bm = (γ,m−1/2γ⊥), then

Θ−1m = Bm{B′mΘmBm}−1B′m = (γ,m−1/2γ⊥)

(
γ′Θmγ m−1/2γ′Θmγ⊥

m−1/2γ′⊥Θmγ m−1γ′⊥Θmγ⊥

)−1
(γ,m−1/2γ⊥)′

D→ (γ, 0k×(k−q))

(
Φ 0q×(k−q)

0(k−q)×q Ξ

)−1
(γ, 0k×(k−q))

′ = γΦ−1γ′,

because of the assumptions (33), (33), and (33).

Proof of Theorem 1. The representation (10) follows from

β′yt = ρβ′yt−1 − β′αξ + β′εt
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by backward elimination which gives yt+h as function of yt and later innovations

α′⊥yt+h = α′⊥yt + α′⊥

h−1∑
i=0

εt+h−i,

β′yt+h − ξ = ρ(β′yt+h−1 − ξ) + β′εt+h = · · · = ρh(β′yt − ξ) +

h−1∑
i=0

ρiβ′εt+h−i.

These results are combined using the identity

In = β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′ = C + α(β′α)−1β′, (36)

to give

yt+h − yt = Cyt+h + α(β′α)−1β′yt+h − yt (37)

= C
h−1∑
i=0

εt+h−i + Cyt − yt + α(β′α)−1{ξ + ρh(β′yt − ξ) +
h−1∑
i=0

ρiβ′εt+h−i},

which reduces to (11) using (36). We then find (12) and (13). It follows from Assumption
1 that the eigenvalues of ρ are less than one in absolute value, so that ρh → 0, h → ∞.
Moreover, from (37) it follows that

β′Σt,hβ =
h−1∑
i=0

ρiβ′Etεt+h−iε
′
t+h−iβρ

′i P→
∞∑
i=0

ρiβ′Ωβρ′i = V ar(β′yt),

h−1β′⊥Σt,hβ⊥ = β′⊥Ch
−1

h−1∑
i=0

Etεt+h−iε
′
t+h−iC

′β⊥ +OP (1)
P→ β′⊥CΩC ′β⊥,

β′⊥Σt,hβ = OP (1).

Note that the limits do not depend on t because of the mixing condition (4). Thus (15) holds
and using Lemma 1, also (16) follows. The same proof can be applied to show the result for
Σh.

Proof. Proof of (17): We introduce the companion form of the lag two model (1), which we
formulate as a lag one model for the stacked process ỹt = (y′t, y

′
t−1)

′ with errors ε̃t = (ε′t, 0
′
n)′(

∆yt
∆yt−1

)
=

(
α Γ1

0n×r In

){(
β In

0n×r −In

)′(
yt−1
yt−2

)
−
(

ξ
0n

)}
+

(
εt
0n

)
,

or
∆ỹt = α̃(β̃′ỹt−1 − ξ̃) + ε̃t.

where

α̃ =

(
α Γ1

0n×r In

)
, β̃ =

(
β In

0n×r −In

)
, ξ̃ =

(
ξ
0n

)
, Ω̃ =

(
Ω 0n×n

0n×n 0n×n

)
.
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Let C = β⊥(α′⊥(In − Γ1)β⊥)−1α′⊥, see (2) in Assumption 1, then the derived parameters are

α̃⊥ =

(
α⊥
−Γ′1α⊥

)
, β̃⊥ =

(
β⊥
β⊥

)
, C̃ =

(
C −Γ1C
C −Γ1C

)
, ρ̃ =

(
Ir + β′α β′Γ1

α Γ1

)
.

It follows that

(Ir, 0n×n)C̃
h−1∑
i=0

Et(ε̃t+h−iε̃
′
t+h−i)C̃

′(In, 0n×n)′ = C
h−1∑
i=0

Et(εt+h−iε
′
t+h−i)C

′. (38)

The results (12) and (13) hold for the process ỹt by adding a tilde on all parameters,

Σ̃t,h = C̃
h−1∑
i=0

Et(ε̃t+h−iε̃
′
t+h−i)C̃

′ + α̃(β̃′α̃)−1(

h−1∑
i=0

ρ̃iβ̃′Et(ε̃t+h−iε̃
′
t+h−i)β̃ρ̃

′i)(α̃′β̃)−1α̃′ (39)

+ C̃

h−1∑
i=0

Et(ε̃t+h−iε̃
′
t+h−i)β̃ρ̃

′i(α̃′β̃)−1α̃′ + α̃(β̃′α̃)−1
h−1∑
i=0

ρ̃iβ̃′Et(ε̃t+h−iε̃
′
t+h−i)C̃

′,

µ̃t,h = α̃(β̃′α̃)−1(ρ̃h − Ir+n)(β̃′ỹt − ξ̃). (40)

The conditional mean and variance of yt+h − yt are then µt,h = (In, 0n×n)µ̃t,h and

Σt,h = (In, 0n×n)Σ̃t,h(In, 0n×n)′

= C
h−1∑
i=0

Etε̃t+h−iε̃
′
t+h−iC

′ + (In, 0n×n)α̃(β̃′α̃)−1(
h−1∑
i=0

ρ̃iβ̃′Etε̃t+h−iε̃
′
t+h−iβ̃ρ̃

′i)(α̃′β̃)−1α̃′(In, 0n×n)′

+ C
h−1∑
i=0

Etε̃t+h−iε̃
′
t+h−i(In, 0n×n)β̃ρ̃′i(α̃′β̃)−1α̃′ + α̃(β̃′α̃)−1

h−1∑
i=0

ρ̃iβ̃′(In, 0n×n)′Etε̃t+h−iε̃
′
t+h−iC

′.

It is seen that conditions (33)—(35) from Lemma 1 are satisfied, and this implies that Σ−1t,h
P→

βV ar−1(β′yt)β
′, such that the optimal hedging portfolio, as given in (5), has limit

η∗t,h = Σ−1t,hen1/e
′
n1Σ

−1
t,hen1

P→ βΦ−1βββ
′en1/e

′
n1βΦ−1βββ

′en1, for h→∞.

The proof of (18), (19) and (20): It follows from (40), using β′(In, 0n×n) = (Ir, 0r×n)β̃′,
that

β′µt,h = β′(In, 0n×n)(β̃′α̃)−1(ρ̃h − Ir+n)(β̃′ỹt − ξ̃)

= (Ir, 0r×n)(ρ̃h − Ir+n)(β̃′ỹt − ξ̃)
P→ −(Ir, 0r×n)(β̃′ỹt − ξ̃) = −(β′yt − ξ),

such that

η∗t,h = Σ−1t,hen1/e
′
n1Σ

−1
t,hen1

P→ −(e′n1βΦ−1βββ
′en1)

−1e′n1βΦ−1ββ (β′yt − ξ),

η∗′t,hΣ
−1
t,hη

∗
t,h = (e′n1Σ

−1
t,hen1)

−1 P→ e′n1βΦ−1βββ
′en1.

Finally, to prove (20), note that

e′n1Σ
−1
t,hen1

P→ e′n1βΦ−1βββ
′en1 > 0 if β′en1 6= 0,
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and

e′n1Σt,hen1 = e′n1C
h−1∑
i=0

Etεt+h−iε
′
t+h−iC

′en1 +OP (1)
P→∞, if e′n1β⊥ 6= 0.

Thus, if both conditions are satisfied,

1−R2t,n =
(e′n1Σ

−1
t,hen1)

−1

e′n1Σt,hen1

P→ 0.

Proof of Theorem 3. A cointegrating portfolio has the form βψ for some ψ ∈ Rr. The
conditional variance of ψ′β′yt+h is ψ′β′Σt,hβψ, which under the constraint e′n1βψ = 1 is
optimized by (5) for a′ = e′n1β, and we get

ψ∗t,h = (β′Σt,hβ)−1β′en1/(e
′
n1β(β′Σt,hβ)−1β′en1)

−1 P→ Φ−1βββ
′en1/(e

′
n1βΦ−1βββ

′en1)
−1,

such that the limit of βψ∗t,h is (22).

Proof of Theorem 4. Maximizing the Sharpe ratio is equivalent to minimizing the variance
η′Σt,hη subject to the constraint η′µt,h equal to a constant, and the optimizing portfolio and
its limit are therefore given by any portfolio proportional to

η†t,h = Σ−1t,hµt,h
P→ −βΦ−1βββ

′(In, 0n×n)α̃(β̃′α̃)−1(β̃′ỹt − ξ̃).

Using β′(In, 0n×n) = (Ir, 0r×n)β̃′, the limit becomes

−βΦ−1ββ (Ir, 0r×n)(β̃′ỹt − ξ̃) = −βΦ−1ββ (β′yt − ξ).

Restricting the portfolio to a cointegrating portfolio, η = βψ, ψ ∈ Rr, it holds that

(η′µt,h)
2

η′Σt,hη
=

(ψ′β′µt,h)
2

ψ′β′Σt,hβψ
,

such that the optimal η is proportional to βψ†

βψ† = β(β′Σt,hβ)−1β′µt,h
P→ −βΦ−1βββ

′(In, 0n×n)α̃(β̃′α̃)−1(β̃′ỹt − ξ̃) = −βΦ−1ββ (β′yt − ξ).

Proof of Theorem 6. Proof of (28): We find from representation (11), applied to ỹt,
multiplying by (In, 0n×n), that

yt+h − yt = C
h−1∑
i=0

εt+h−i + (In, 0n×n)α̃(β̃′α̃)−1
h−1∑
i=0

ρ̃iβ̃′ε̃t+h−i (41)

+ (In, 0n×n)α̃(β̃′α̃)−1(ρ̃h − Ir)(β̃′ỹt − ξ̃) = zt + ut,

say, where ut is the last term and zt the sum of the first two. It is seen that regressing on
(ỹ′t, 1) = (yt, yt−1, 1), or equivalently on (yt − yt−1, β

′yt, 1, β
′
⊥yt), eliminates ut. Note that
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zt is uncorrelated with ∆yt, β
′yt, β

′
⊥yt, which only depend on εt, . . . , ε1, because εt form a

martingale difference sequence. Therefore, correcting yt+h − yt for the constant and the
stationary processes ∆yt, β

′yt, has no effect asymptotically. Correcting the I(0) process zt
for the I(1) process β′⊥yt has no effect asymptotically, and it follows by the law of large
numbers applied to the ergodic process ztz′t, that

ShT = T−1
T∑
t=1

ztz
′
t + oP (1)

P→ E(V art(yt+h − yt)) = Σh,

where Σh is given by (14).
Proof of (29): The CVAR parameters α̃, β̃, ξ̃, Ω̃ can be estimated consistently using the

quasi-likelihood assuming i.i.d. errors, as was shown by Boswijk et al. (2016), see Theorem
5. Inserting these in (14) shows (29).

Proof of Theorem 7. The representation

yt − y0 = C
t−1∑
i=0

εt−i + (In, 0n×n)α̃(β̃′α̃)−1(
t−1∑
i=0

ρ̃iβ̃′ε̃t−i) (42)

+ (In, 0n×n)α̃(β̃′α̃)−1(ρ̃t − Ir)(β̃′ỹ0 − ξ̃),
follows from (41). Regressing on a constant, the last term vanishes for T → ∞, and will
be ignored, and for the second term correcting for the constant is asymptotically negligible.
Thus the important part of the representation is

(yt|1) = C(
t−1∑
i=0

εt−i|1) + (In, 0n×n)α̃(β̃′α̃)−1
t−1∑
i=0

ρ̃iβ̃′ε̃t−i.

The conditions of Lemma 1 can now be checked. Using Boswijk et al. (2016), it is seen
that

T−1
[Tu]∑
t=1

εt
D→ W (u),

T−1
T∑
t=1

{
t−1∑
i=0

ρ̃iβ̃′ε̃t−i}{
t−1∑
i=0

ρ̃iβ̃′ε̃t−i}′
P→
∞∑
i=0

ρ̃iβ̃′Ω̃β̃ρ̃′i.

HereW (u) is a Brownian motion with variance Ω. It follows, using β′(In, 0n×n) = (Ir, 0r×n)β̃′,
that

T−1β′⊥STβ⊥
D→β′⊥C{

∫ 1

0

(W (u)|1)(W (u)|1)′du}C ′β⊥,

β′STβ =(Ir, 0r×n)T−1
T∑
t=1

{
t−1∑
i=0

ρ̃iβ̃′ε̃t−i}{
t−1∑
i=0

ρ̃iβ̃′ε̃t−i}′(Ir, 0r×n)′

P→ (Ir, 0r×n)(

∞∑
i=0

ρ̃iβ̃′Ω̃β̃ρ̃′i)(Ir, 0r×n)′ = V ar(β′yt).

Finally, β′STβ⊥ = OP (1), and applying Lemma 1 it follows that S−1T
P→ β(V ar(β′yt))

−1β′

for T →∞.
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