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Abstract

The endogenous grid method (EGM) significantly speeds up the solution of stochas-
tic dynamic programming problems by simplifying or completely eliminating root-
finding. We propose a general and parsimonious EGM extended to handle 1) mul-
tiple continuous states and choices, 2) multiple occasionally binding constraints,
and 3) non-convexities such as discrete choices. Our method enjoys the speed gains
of the original one-dimensional EGM, while avoiding expensive interpolation on
multi-dimensional irregular endogenous grids. We explicitly define a broad class of
models for which our solution method is applicable, and illustrate its speed and
accuracy using a consumption-saving model with both liquid assets and illiquid
pension assets and a discrete retirement choice. (JEL: C13, C63, D91)
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A General Endogenous Grid Method

1 Introduction
The real-world decision problems households and firms face are often not as well-behaved
as assumed in economic models. Important interactions between different choices imply
that they are best studied collectively. Accounting for occasionally binding constraints
and the discrete nature of many choices, such multi-dimensional dynamic models can be
very hard to solve. This has forced, and continue to force, researchers on a quest for faster
solution methods in order to be able to solve and analyze behavior from increasingly more
complex dynamic economic models.

We contribute to this literature by proposing a parsimonious solution method building
on the endogenous grid point method (EGM) of Carroll (2006). Our method significantly
reduces computational time compared to standard methods for a broad class of stochas-
tic dynamic programming models with multiple continuous states and choices, multiple
occasionally binding constraints, and non-convexities such as discrete choices.

The central challenge when using the EGM to solve models with non-convexities is
to determine which solutions to the FOCs are globally optimal. This problem arises as
non-convexities typically imply that the FOCs are only necessary, but not sufficient.1

We are the first to provide an upper envelope algorithm for multi-dimensional models
solving this task. The previous upper envelope algorithms in Fella (2014) and Iskhakov,
Jørgensen, Rust and Schjerning (2015) for one-dimensional models rely on monotonicity
assumptions, which have no counterpart in multi-dimensional models.

We are furthermore the first to show how to easily transform the irregular state grids
implied by the multi-dimensional EGM into regular, e.g. rectilinear, grids. Interpolation
on irregular grids have previously been shown to be the key bottleneck for the performance
of multi-dimensional EGM (without non-convexities). Ludwig and Schön (2014) show
that using Delaunay-triangulations and so-called visibility walks can result in the EGM
being slower than time iterations in a two-dimensional model without non-convexities.
White (2015) shows how assuming a specific form of monotonicity can be used to avoid
the triangulation step, but his method still requires expensive visibility walks, and cannot
handle non-convexities.

Finally, we are the first to show how multiple occasionally binding constraints can be
handled parsimoniously within an EGM without any prior knowledge on where in the
state space which constraints are binding. Previously, Hintermaier and Koeniger (2010)
have shown how to handle two occasionally binding constraints, but only in a hybrid form
of EGM with a time iteration step and utilizing specific properties of their model’s Kuhn-

1 Proving that the value function is differentiable at optimal interior choices, and that the FOCs are
thus necessary at all, is in itself a non-trivial task for models with non-convexities; recent theoretical
results from Clausen and Strub (2013), however, turn out to be very helpful in this regard.
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A General Endogenous Grid Method

Tucker multipliers.2 The general framework for a multi-dimensional EGM presented in
White (2015) does not allow for constraints at all. As our solution method generalizes
the various previous generalizations of EGM we, for brevity, refer to it as the G2EGM.3

To illustrate the potential of our method, we solve an illustrative model of consump-
tion/saving with both liquid assets and illiquid pension assets and a discrete retirement
choice. For a given level of precision measured in terms of the value function, our G2EGM
is about 20 times faster than a highly optimized implementation of the standard work
horse method of value function iteration (VFI). The main benefit of our method compared
to VFI is that we avoid searching for the optimal choices using an expensive constrained
multi-dimensional global search algorithm. The speed-up of our G2EGM is even larger if
we alternatively measure precision in terms of the average errors in the Euler-equation for
consumption. Further extending our illustrative model with a labor supply decision on
the intensive margin and human capital accumulation (i.e a model with three continuous
states and choices), we show that the speed-gain is roughly the same. As our proposed
solution method can be applied in many fields of economics, it consequently makes it pos-
sible to estimate richer life cycle models than previously using full-solution estimators,
and thus perform policy analysis based on more realistic models. For example, models
that would take almost three weeks to estimate using VFI can be estimated within a day
using our method.

We also explicitly define a broad model class in terms of necessary and sufficient
conditions on model fundamentals where our method is applicable. Hereby researchers
can check whether a particular model of interest is solvable using our method.4 In broad
terms the three central conditions of our model class are: i) there must exist a “low” di-
mensional vector of post-decision state variables which collectively is a sufficient statistic
for the continuous states and choices5, ii) the FOCs must be at least necessary, iii) the
model must imply injectivity in a specific sense. Examples of model types which could
be solved using our method are models of consumption and human capital accumula-
tion (Imai and Keane, 2004), models of retirement and health with a consumption floor
(French and Jones, 2011), models of life insurance and consumption over the life cycle

2 Barillas and Fernández-Villaverde (2007) also develop a hybrid form of EGM with a value function
iteration step.

3 In a broader context our paper is also related to the growing literature on solving high-dimensional
dynamic economic models. See Maliar and Maliar (2014) for a review, and Den Haan, Judd and Juillard
(2011) for a comparison of competing methods. The use of post-decision states, which is central for
the EGM, is also widespread in the engineering literature (see Powell (2011) and Bertsekas (2012)),
but to the best of our knowledge they focus exclusively on some form of value function iteration. Hull
(2015) discusses how these insights can be used when solving dynamic economic models.

4 MATLAB and C++ code for the illustrative models are also available from the authors web pages.
5 In our two-dimensional illustrative model, for example, the post-decision (end-of-period) levels of liquid
assets and illiquid pension assets contain all relevant information for forecasting future (beginning-of-
period) asset levels.
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A General Endogenous Grid Method

(Hong and Ríos-Rull, 2012), models of liquid and illiquid assets with fixed (i.e. non-
convex) transaction costs and Epstein-Zin-Wiel preferences (Kaplan and Violante, 2014;
Berger and Vavra, 2015), and models of human capital accumulation, savings and career
and fertility choices (Adda, Dustmann and Stevens, forthcoming).

The paper proceeds in two more or less self-contained parts: The intention is that
readers only interested in the overall idea can stop reading after section 4. Specifically,
in the following section 2, we describe an illustrative model of retirement and saving in
both liquid assets and illiquid pension assets. In section 3 we describe how the illus-
trative model can solved using our G2EGM. In section 4 we report speed and accuracy
comparisons with VFI. From section 5 we instead focus on the general case and introduce
a broad model class in terms of necessary and sufficient conditions where our G2EGM is
applicable. In section 6 we describe in detail how our G2EGM can be used to solve all
models in this class. Section 7 concludes the paper with final remarks.

2 Illustrative Model
In this section, we formulate a consumption-saving model with both liquid and illiquid
assets and an absorbing discrete retirement choice, which we later use to illustrate our
proposed solution method. We assume that the saved liquid assets can always be accessed
while the saved illiquid pension assets can only be accessed at retirement. The problem
when retired and working thus differ.

Retired households. In retirement, households solve a standard consumption-savings
problem. The resources available for consumption in period t is denoted mt, such that
post-decision (or end-of-period) assets at after consumption ct is given by

at = mt − ct

Next period resources are given by

mt+1 = Raat + yt+1

where Ra is the gross rate of return, and yt+1 = y is a (deterministic) retirement income.
We assume that households are not allowed to borrow, at ≥ 0, and that consumption is
restricted to be positive.

Working households. Working households solve a more general problem, and are
allowed to save in both liquid assets (at) and illiquid pension assets (bt). Denoting the
pension fund deposits by dt, we assume that the post-decision (or end-of-period) assets
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levels are given by

at = mt − ct − dt
bt = nt + dt + g(dt)

where g(dt) is a pension deposit function potentially allowing for an extra incentive to
accumulate illiquid pension funds. Deposits are required to be non-negative, i.e. dt ≥
0, and the assumption of no borrowing, at ≥ 0, is also maintained for the working
households.

The resources available for consumption and pension savings in the next period are

mt+1 = Raat + ηt+1, log ηt+1 ∼ N (−.5σ2
η, σ

2
η)

nt+1 = Rbbt

where ηt is stochastic labor income, and we assume a higher return on pension assets
than on liquid assets, i.e. Rb ≥ Ra.

2.1 Recursive Formulation

Denoting the discrete choice of retirement by zt = 0 and the discrete choice of working
by zt = 1, the Bellman equation of the illustrative model can be formulated as

Vt(zt−1,mt, nt, εt) = max
zt∈Zt(zt−1)

vt(zt,mt, nt) + σεε(zt) (2.1)

s.t.

Zt(zt−1) =




{0, 1} if zt−1 = 1

0 if zt−1 = 0

where ε(zt) is an iid extreme value type I taste shock across the discrete choices and σ2
ε

is proportional to the variance of the taste shocks. Using the distributional assumption
on the taste shocks, we derive a closed form expression for the expected value just before
the realization of the taste shocks as

EVt(zt−1,mt, nt) ≡
ˆ

ε

Vt(zt−1,mt, nt, εt)H(dε) = σε log(
∑

zt∈Zt(zt−1)
exp(vt(zt,mt, nt)/σε))

(2.2)
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The discrete-choice-specific value function for the retiring (or retired) households is

vt(0,mt, nt) = max
ct

u(ct, 0) + βVt+1(0,mt+1, 0, 0) (2.3)
s.t.

at = (mt + nt)− ct
mt+1 = Raat + y

ct ∈ [0,mt + nt]

where we let the available resources for consumption (since that is the only choice if the
consumer retires) be mt+nt, and u(ct, zt) denotes per-period utility flow from consuming
ct in labor market state zt.

The discrete-choice-specific value function for the working households is

vt(1,mt, nt) = max
ct,dt

u(ct, 1) + β

ˆ

η

EVt+1(1,mt+1, nt+1)G(dη)
︸ ︷︷ ︸

≡wt(at,bt)

(2.4)

s.t.
at = mt − ct − dt
bt = nt + dt + g(dt)

mt+1 = Raat + ηt+1

nt+1 = Rbbt

ct ≥ 0
dt ≥ 0

ct + dt ∈ [0,mt]

where G(η) is the probability distribution of income shocks and we denote the con-
tinuation value (defined on post-decision states) as wt(at, bt). The timing is such that
next-period income, ηt+1, is realized after the discrete labor market choice, zt, has been
made. This is purely for simplicity because it removes the need to include the current
income realization as a state variable in the model.

We assume the following functional forms

u(ct, zt) = c1−ρ
t

1− ρ − α1{zt = 1} (2.5)

g(dt) = χ log(1 + dt) (2.6)

where we have chosen g(dt) such that it is increasing and concave in dt to mimic something
like a tax-deduction from pension deposits which is gradually decreasing in the level of
deposits.
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In our baseline parametrization we mute all stochastic elements. Particularly, we let
ση = σε = 0 such that neither income nor taste shocks are present in the baseline model.6

We focus on the deterministic case because it is harder to solve accurately.7 We also
report results when including stochastic elements in the model.

The optimal choice functions are denoted by c?t (mt, nt) and d?t (mt, nt), and can be
found using standard value function iteration (VFI). This entails specifying an exoge-
nous grid over the states (mt and nt), and globally searching for the optimal choices (ct
and dt) calculating the value-of-choice for each guess by evaluating the utility function
and computing the continuation value using numerical integration over the interpolated
next period value function. The repeated global searches and numerical integration are,
however, time consuming, and in the next section, we therefore describe a generalized
endogenous grid method, which can be used to solve the model much faster.

3 Solving the Illustrative Model Using the G2EGM
In this section, we show how the illustrative model can be solved using our G2EGM. For
completeness, we first show how the problem for the retired households can be solved
using the original EGM developed in Carroll (2006), and discuss the challenges inherent
in extending the EGM to multi-dimensional models with potential non-convexities. For
pedagogical reasons, we secondly explain how the problem for the retired households can
alternatively be solved using our method even if we “forget” that the Euler-equation is
sufficient, and our knowledge of where in the state space the borrowing constraint is
binding. Finally, we show how the more complex problem of the working household can
also be solved by our method, and report speed and accuracy results.

3.1 Solving the problem for retired households with the EGM

The fundamental idea in the EGM is to specify an exogenous grid, Ga, over the post-
decision state (end-of-period assets, at) instead of over the pre-decision state (resources,
mt). Let Ga by strictly increasing and indexed by i ∈ {1, . . . ,#a}. We can then con-
struct nodes containing endogenous resource grid points,mi

t, with associated consumption
choices, cit, by inverting the Euler-equation and the budget constraint, i.e.

cit = (βRaEt[c?t+1(Rait + yt+1)−ρ]−
1
ρ (3.1)

mi
t = ait + cit (3.2)

6 In the case when σε = 0, the expected value function collapses to EVt(zt−1,mt, nt) =
maxzt∈Zt(zt−1){vt(zt,mt, nt)}.

7 See for example the discussion in Iskhakov, Jørgensen, Rust and Schjerning (2015).
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where c?t+1() is the next-period optimal consumption function. As the Euler-equation is
both necessary and sufficient, each found cit must be the unique optimal choice at mi

t,
i.e. c?t (mi

t) = cit. Additionally, it can be shown that the borrowing constraint is binding,
c?t (mt) = mt, for all mt lower than the limit of mi

t when ait ↓ 0.
The central benefit of the EGM thus is that the optimal consumption function (and

therefore also the value function) can be found without any root-finding (as required in
time iterations) or any numerical optimization (as required in value function iterations).
This in particular implies that the expectation over next-period variables is only taken
once for each grid point.

3.2 Three challenges for generalizing the EGM

In order to develop a general EGM for multi-dimensional models with non-convexities,
we need to handle the following three challenges:

1) Irregular endogenous grids. Firstly, the non-linearity of the Euler-equation im-
plies that the endogenous resource grid points, mi

t, are unevenly spaced even if the exoge-
nous end-of-period asset grid points, ait, are evenly spaced. In the one-dimensional case
this is not a problem because the neighboring points of a point to be interpolated can still
be located efficiently using e.g. bisection search. In the multi-dimensional case, however,
there are no simple algorithm for finding the neighboring points in a fully irregular grid.
Ludwig and Schön (2014) therefore suggest to use a Delaunay-triangulation to divide a
two dimensional irregular grid into triangles (or into simplexes in higher dimensions). A
so-called visibility walk can then be used to find the triangle containing the point to be
interpolated. Hereafter standard barycentric interpolation can be applied.8 Even using
highly optimized algorithms for both the triangulation and the visibility walks, these
procedures are, however, time consuming, and thus a major computational burden for
multi-dimensional EGM.9

2) Non-sufficient FOCs. Secondly, in models with non-convexities the FOCs (and
thus the Euler-equations) might not be sufficient, but only necessary. Non-sufficiency
of the consumption Euler-equation can, for example, arise if an infinitesimal increase in
savings today (at ↑) implies a change in a future discrete choice. If such a change implies
a downward jump in the next-period optimal consumption function then a small increase

8 See Brumm and Grill (2014) for another application of Delaunay-triangulation and barycentric inter-
polation in economics.

9 In the case without constraints and non-convexities, White (2015) shows how assuming a specific form
of monotonicity can be used to construct a faster interpolation method avoiding a triangulation-type
operation, but still requiring visibility walks. His procedure does not, however, extend to the general
case.
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Figure 3.1: Illustration: Interpolation of all solutions, 1 dimension.

(a) Consumption.
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Notes: Figure 3.1 plot nodes generated from nine increasing levels of post-decision resource levels at.
Panel (a) plots pre-decision resource levels, mt, and consumption levels, ct. Panel (b) plots pre-decision
resource levels, mt, and values-of-choice. The vertical lines at m1 and m2 are resource levels, where we
need to interpolate optimal consumption. The values indicated by the triangles are chosen in G2EGM.

in ait will lead to a downward jump in cit (see equation (3.1)) and an upward jump in
mi
t (see equation (3.2)). An example of this is shown in panel (a) of figure 3.1, where

nodes of resource levels, mi
t, and consumption choices, cit, are shown for nine increasing

end-of-period asset grids points, ait, and where there is a jump between the fourth and
fifth node.

The challenge now becomes to construct an upper envelope algorithm to determine
which of the solutions to the Euler-equation to respectively keep and disregard. If we
incidentally had mi0

t = mi1
t , but ci0t 6= ci0t , then the true globally optimal consumption

choice could be found by calculating the value-of-choice as

vit = (cit)1−ρ

1− ρ + βEt[vt+1(Rait + yt+1)] (3.3)

and determining whether vi0t > vi1t or vice versa. In general, however, the values-of-choice
are only found for different mi

t as shown in panel (b) of figure 3.1.
The upper envelope algorithms presented in Fella (2014) and Iskhakov, Jørgensen,

Rust and Schjerning (2015) for one-dimensional models rely on monotonicity assumptions,
which have no counterpart in multi-dimensional models.10

10For a given node i0, an intuitive upper envelope algorithm would be to loop through all the other
nodes, and discard the node i1 if there exists another node i1 6= i0 which have choices, if feasible and
made at node i0, would imply a higher value-of-choice. This is, however, a rather costly operation
because it in principle implies that we for any given node need to loop through all the other nodes
checking this condition.
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3) No prior knowledge on where the constraints are binding. Thirdly, in multi-
dimensional models with multiple constraints, we might not have any prior knowledge on
where in the state space which constraints are binding. The method presented in Hinter-
maier and Koeniger (2010) for handling multiple constraints utilize specific properties of
their model’s Kuhn-Tucker multipliers, and is a hybrid EGM with a (slow) time iteration
step. The general framework for a multi-dimensional EGM presented in White (2015)
does consider constraints at all.

The central benefit of our proposed solution method, solving the three challenges
above, is that we are able to fully reap the benefits of the EGM in terms of limiting the
use of numerical integration and avoiding global constrained searches without introduc-
ing new computationally expensive tasks such as long upper envelope loops, Delaunay-
triangulations or visibility walks. This can be illustrated by solving the problem for the
retired household with our G2EGM “forgetting” that we know that the Euler-equation is
sufficient, and where in the state space the borrowing constraint is binding.

3.3 Solving the problem for retired households with the G2EGM

The first step in our G2EGM is to divide the considered problem into so-called segments,
such that it in each segment is given, which choices are constrained, and which choices are
unconstrained. For the retired household problem there thus is an unconstrained (ucon)
segment with at > 0, and a constrained (con) segment with at = 0.

In the unconstrained segment (ucon), we still specify an exogenous grid, Ga, over the
post-decision state ait, and endogenously find resource grid points, mi

t, with consumption
choices, cit, using equation (3.1) and (3.2). Let Ga be strictly increasing and indexed by
i ∈ {1, . . . ,#a}.

In the constrained segment (con), we instead specify an exogenous grid, Gc, over
the constrained choice, cit, and endogenously find resource grids points, mi

t, using the
borrowing constraint, ait = 0 ↔ mi

t = cit. Let Gc be strictly increasing and indexed by
i ∈ {1, . . . ,#c}.

The fundamental new idea in our solution method is to also specify an exogenous
common resource grid, Gm, over mt. Let Gm be strictly increasing and indexed by
j ∈ {1, . . . ,#m}. Interpolating the consumption choices from each of the two endoge-
nous segment-specific irregular grids, Ga and Gc, to the common regular grid, Gm, will
immediately solve the first challenge discussed above.

Let us first see how interpolation to the common grid can be performed efficiently for
the unconstrained segment (ucon). Note that the end-of-period asset grid, Ga, can be
divided into a set of line segments given by {(a1

t , a
2
t ), (a2

t , a
3
t ), . . . , (a

#a−1
t , a#a

t )}. Using
the associated resource grid points, mi

t, we thus immediately have the same line segments
translated from a-space into m-space, i.e. {(m1

t ,m
2
t ), (m2

t ,m
3
t ), . . . , (m

#a−1
t ,m#a

t )}. For

9



A General Endogenous Grid Method

each line segment in m-space, we can easily find the resource levels, mj
t ’s, in the common

resource grid, Gm, which are in between mi
t and mi+1

t . At these common resource grid
points candidate optimal consumption choices can then be found by linear interpolation,
i.e.

cijt = cit −
ci+1
t − cit

mi+1
t −mi

t

(mj
t −mi

t) (3.4)

Looping through all the line segments, multiple candidate optimal consumption choices
could be found at each mj

t . These different candidates can subsequently be compared
directly in terms of the values-of-choice they imply, i.e.

vijt = (cijt )1−ρ

1− ρ + βwt(mj
t − cijt ) (3.5)

where we avoid taking the expectation repeatedly by using the post-decision value func-
tion wt(). In sum, the interpolation to the common grid is thus simultaneously an upper
envelope, which solves the second challenge discussed above. Specifically, it ensures that
solutions to the Euler-equation, which are not optimal consumption choices, are not used.
This can be seen most clearly by returning to the example in figure 3.1. If m1 is a point
in the common resource grid, Gm, we see that our procedure constructs three candidate
optimal consumption choices by interpolation between, respectively, node 2 and 3 (the
triangle), node 6 and 7 (the square), and node 4 and 5 (the diamond). The implied values-
of-choice is plotted in panel (b), and the candidate implying the highest value-of-choice
(the triangle) is subsequently chosen as the optimal level of consumption at m1.11

Next, we turn to the constrained segment (con), and loop through all the line seg-
ments in the grid over the constrained choice, Gc, i.e. {(c1

t , c
2
t ), (c2

t , c
3
t ), . . . , (c

#c−1
t , a#c

t )}.
As above, we interpolate to the common resource grid, Gm. If these new candidate con-
sumption choices overlap with some of the candidate consumption choices found from
the unconstrained segment, we again only keep the consumption choice with the highest
implied value of choice (see equation (3.5)). Hereby a second upper envelope is effectively
applied also finding the over-arching maximum across the two segments. This solves the
third, and final, challenge by determining where in the state space which constraints are
binding.

11As illustrated, the optimal level of consumption will also be found from interpolation between node 2
and 3 for a bit higher resource levels than m1, but at some point (close to the true kink) the optimal
level of consumption will instead begin to be found from interpolations between node 6 and 7. And
further to the right, such as at m2, the optimal consumption level will be found by interpolation
between node 7 and 8.
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3.4 Solving the problem for working households with the G2EGM

We now turn to the two-dimensional problem for the working households. This problem
cannot be solved with standard EGM or any of the previous extensions in the literature
without introducing steps with time or value function iterations. However, following
the same steps as in the one-dimensional case above, it can be solved by our G2EGM.
Basically, the only difference is that we, instead of looping through the line segments of
the exogenous grids, need to loop through easily defined triangles covering the exogenous
grids.

Before stating the five steps of our solution method, we first divide the problem into
four segments. In the first segment, both the consumption choice, ct, and the pension
deposit choice, dt, are unconstrained. In the second segment, both the borrowing con-
straint, at = 0, and the deposit constraint, dt = 0, bind. In the third and fourth segment,
only one of the constraints binds, respectively.12 For each of these segments, we in par-
ticular need to understand how we can construct node sets containing pre-decision states
(mt,nt) and associated choices (ct,dt).

Firstly, we consider the fully unconstrained segment (ucon), where ct and dt are
unconstrained choices. Using recent results from Clausen and Strub (2013) we show in
the online supplemental material that despite the presence of the discrete retirement
choice the following two first order conditions are necessary

ct = (βwa,t(at, bt))−
1
ρ (3.6)

dt = χ(
wa,t(at,bt)
wb,t(at,bt) − 1

) − 1 (3.7)

where wx,t() is the derivative of wt() wrt. x.
This implies that by fixing at and bt we can find ct using equation (3.6) and dt using

equation (3.7). Using the inverted budget constraints

mt = at + ct + dt (3.8)
nt = bt − dt − g(dt) (3.9)

we can then find mt and nt.
Secondly, we consider the fully constrained segment (con), where at = 0 and dt = 0.

In this segment there is obviously no FOCs, and instead of fixing only the post-decision

12We can rule out cases with at = mt or dt = mt due to limct→0 uc (ct, zt) =∞.
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states, we also fix ct and dt = 0.13 From the budget constraints we then have

mt = at + ct + dt = ct

nt = bt − dt − g(dt) = bt

Note, that fixing grids for constrained choices can, alternatively, be interpreted as
fixing grids for the Kuhn-Tucker multipliers associated with the binding constraints.

Thirdly, we consider the segment with only dt = 0 constrained (dcon). In this segment
ct is the sole choice variable with the same FOC as in equation (3.6). Fixing at, bt and
dt = 0, we can therefore find ct using this FOC, and from the budget constraints we then
have

mt = at + ct + dt = at + ct

nt = bt − dt − g(dt) = bt

Fourthly, we consider the final segment with only at = 0 constrained (acon). In this
segment dt can be seen as the sole choice variable by expressing ct as a function of dt by
at = 0↔ ct = mt − dt. Substituting this into the original problem, we find that dt must
satisfy the segment-specific FOC

0 = uc(ct)
∂ct
∂dt

+ βwb,t(at, bt)(1 + gd(dt))↔

dt = χ(
c−ρt

βwb,t+1(at,bt) − 1
) − 1

Fixing at = 0, bt and ct we can therefore find dt using this FOC, and using the budget
constraints we also have

mt = at + ct + dt = ct + dt

nt = bt − dt − g(dt)

In sum, we can thus construct node sets containing pre-decision states (mt,nt) and
associated choices (ct,dt) for each of the four segments. Our G2EGM can now be sum-
marized in following five steps:

Step 1. Specify exogenous grids. i) construct a common regular (e.g. rectilinear)
grid Gm,n over states mt and nt, ii) construct a common regular grid Ga,b over

13If we fixed at and bt alone, we could derive nt from nt = bt − dt − g(dt) = bt, but otherwise we would
only have mt = ct, and no more equations to determine ct. Alternatively, we could also fix mt, nt, and
dt = 0, and derive ct and bt from the budget constraints.

12
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post-decision states at and bt and an interpolant of wt(at, bt), and its derivatives,
on this grid, iii) for each segment construct segment-specific regular grids over
post-decision states at and bt and the segment-specific constrained choices (ct
and dt in con, dt in dcon, and ct in acon).

Step 2. Construct node sets. For each segment and for all points in the segment-
specific grids over post-decision states and constrained choices, use the first order
conditions, the inequality constraints, and the budget constraints, to construct
node sets containing states and candidate optimal choices. (The details on this
was provided separately for each segment above).

Step 3. Local triangulation. For each segment, i) divide the regular grids over post-
decision states and constrained choices into triangles, ii) consider the corre-
sponding triangles mapped into (m,n)-space, and iii) construct the triangle’s
bounding box in (m,n)-space.

Step 4. Interpolation to common state grid Gm,n and first upper envelope. For
each segment and each bounding box, i) find the nodes in the common state
grid Gm,n inside the bounding box, ii) for each state space node find candidate
choices using barycentric interpolation, iii) calculate the implied value of these
interpolated choices,14 and iv) update the optimal choice if no previous set of
choices have been found yielding a higher value-of-choice.

Step 5. Second upper envelope over segments. For each point in the common
state grid Gm,n, choose the optimal choice as the choice from the segment with
the highest value-of-choice.

The fundamental idea in our solution method lies in the local triangulation in step 3. This
firstly implies that we avoid computing the global Delaunay triangulation in (m,n)-space,
which is a costly operation. Secondly, it implies that it is straightforward to interpolate
to the common grid, and find the upper envelopes in step 4 and 5.

Details on the local triangulation. Taking the ucon segment as an example, the
regularity of the post-decision grids in (a,b)-space imply that the local triangulation is
straightforward in this space as also shown in panel (a) of figure 3.2 with rectilinear
grids.15 This further implies that we can avoid time-consuming visibility walks when

14Instead also interpolating/extrapolating the value-of-choide is possible and faster, but can imply large
errors, especially outside the triangle when extrapolation is used.

15We have constructed triangles of the form lower-left (LL) and upper-right (UR) in figure 3.2. Alter-
natively, LR and UL triangles could be constructed or, in general, all combinations of the simplices
could be used to increase robustness.
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interpolating the candidate choices at the common grid nodes of mt and nt in step 4.
The reason is that from the ABC triangle in (a, b)-space shown in panel (a) of figure 3.2,
we directly have the transformed ABC triangle in (m,n)-space shown in panel (b). Panel
(c) then shows that the bounding box can be constructed from the coordinates of the
triangle’s corners. The assumed regular structure of the common state grid, Gm,n, over
mt and nt, imply that it is easy to find the sub-grid inside the bounding box (e.g. using
bisection searches). For all points in this sub-grid using barycentric interpolation in step
4 is then standard. Specifically, for a triangle with corners A, B, and C, the interpolated
consumption choice, c, at the state point (m,n) can be found using

c = ωAcA + ωBcB + (1− ωA − ωB)cC

where the ω’s are the barycentric weights given by16

ωA = (nB − nC)(m−mC) + (mC −mB)(n− nC)
(nB − nC)(mA −mC) + (mC −mB)(nA − nC)

ωB = (nC − nA)(m−mC) + (mA −mC)(n− nC)
(nB − nC)(mA −mC) + (mC −mB)(nA − nC)

which sum to one inside and on the edge of the triangle. To limit the use of extrapolation,
we do not consider points with any barycentric weights less than −0.25; in panel (c) of
figure 3.2 we thus only consider the black nodes inside the bounding box.17

Details on upper envelope. A central feature of our method is that although the
considered triangles are disjoint in (a, b)-space, there might be overlaps in (m,n)-space.
Multiple (interpolated) guesses of the optimal choices will then be found at some points
in the common state grid; only the set of choices implying the highest value-of-choice
should therefore be saved. Overlaps in (m,n)-space will happen in regions where there
is a kink in the continuation value for the optimally implied post-decision states at and
bt. In these regions, the derivatives of the next-period value function are not continuous,
and for a small change in at and/or bt it can thus change a lot, implying a large shift in ct
and/or dt, and therefore also in mt and/or nt. This is illustrated in panel (a)-(c) in figure
3.3, where the triangle EDF is to the northeast of the triangle ABC in (a,b)-space (panel

16The coordinates are found by solving m = ωAmA + ωBmB + (1 − ωA − ωB)mC and n = ωAnA +
ωBnB + (1 − ωA − ωB)nC for ωA and ωB . If A, B, and C should happen to lie on straight line only
interpolation and extrapolation along this line is allowed.

17Contrary to the case plotted for illustrative purposes in panel (c) in figure 3.2, the (a, b)-grids should be
more dense than the (m,n)-grid. This is necessary in order to avoid a large interpolation of interpolation
error because multiple interpolations are used to arrive at the optimal choices in the (m,n)-grid. We
found that around four times as many points in the (a, b)-grids yielded accurate solutions.
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Figure 3.2: Illustration.
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Notes: Figure 3.2 illustrates how a right-angled triangle in (a, b)-space (panel a) is transformed into a
non-right-angled triangle in (m,n)-space (panel b), with an associated bounding box and common grid
nodes (black dots) to be interpolated or extrapolated (panel c).

Figure 3.3: Illustration. With Kinks.
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Notes: See figure 3.2.

a), but to the southwest and partly overlapping in (m,n)-space (panel b).18 In panel (c),
we consequently see that the interpolated choice candidates at the filled black nodes are
calculated twice, once for each triangle. Because we only save the set of choices implying
the highest value-of-choice, this constitutes an upper envelope. The underlying reason
for these overlaps is that the FOCs are only necessary, such that there for given mt and
nt exists multiple ct and dt (and thus multiple at and bt) satisfying the FOCs.19

Finally, we note that our construction of triangles spanning the relevant (a,b)-space
does not necessarily ensure that all the relevant nodes in the common state grid in

18The construction of triangles in the post-decision grid, instead of for example squares, ensures that the
corresponding triangles mapped into (m,n)-space are convex despite the presence of non-convexities.
We thank Matthew White for pointing this out to us.

19Using monotonicity requirements on the post-decision states, it would in principle be possible to a
priori disregard certain triangles with corners on differing sides of a kink. This would be beneficial
because the choices interpolated from these triangles will surely be inferior, and disregarding them
would therefore speed up our solution method without a loss of accuracy. In order to focus on a simple
and robust solution method, we have not explored this possibility any further.
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(m,n)-space are covered. Nodes not covered will not be assigned any choices. Allowing
for extrapolation (i.e. negative barycentric coordinates), this only happens rarely, but to
strengthen the robustness of our method, we add a nearest neighbor interpolation step
(between step 4 and 5) for all nodes without any choices assigned. The computational
cost of this is negligible.20

Handling many segments. An apparent drawback of our solution method is that
the number of segments we need to consider is exponentially increasing in the number of
occasionally binding constraints.

To speed-up our solution method in the face of this curse of dimensionality, we firstly
use the same grids for multiple segments. This implies that the interpolation and inversion
of FOCs done in one segment, can be re-used in another segment. Specifically, if we in
the dcon segment use the same grid over at and bt as in the ucon segment, then we
can directly copy the ct choices found in the ucon segment to the dcon segment. In
more general terms, constrained segments will always be special cases of unconstrained
segments.

Secondly, we can avoid applying the upper envelope algorithm to nodes, where the
constrained choices are clearly not optimal. If we in the dcon segment, for example, have
a node with states (m0,n0) and choices (c0,d0 = 0), then we can disregard this node if
the value-of-choice is increased by slightly deviating from the constraint, i.e. if

(c0 − ε)−ρ
1− ρ + βwt(m0 − c0, n0 + ε+ g(ε)) >

c−ρ0
1− ρ + βwt(m0 − c0, n0)

where ε is a small number.
Thirdly, and finally, for any segment where all the choices are constrained, we can

use the common pre-decision state grid as the exogenous grid, and directly find optimal
candidate choices and implied values-of-choice.

3.5 Policy Functions

All the following results are, unless otherwise explicitly noted, based on the parameters
in table 3.1. This parametrization has no stochastic elements smoothing out the non-
concave regions of the value function, and has been chosen to illustrate the complexity of
the solution, and to test the performance of our proposed solution method in a situation
with many discontinuities in the policy functions. For robustness we also consider a case
with smoothing in terms of σξ = 0.1 and σ2

η = 0.1.

20Alternatively, VFI could be used to determine the optimal choices at these few nodes.
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Table 3.1: Baseline Parameter Values.

Ra Rb β ρ α χ y σ2
η σε

1.02 1.04 0.98 2.00 0.25 0.10 0.50 0.00 0.00

Figure 3.4: Endogenous Irregular Grid, acon-segment, t = T − 5.

(a) Irregular EGM grid.
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Notes: Figure 3.4 illustrates how the upper envelope algorithm removes non-optimal solutions stemming
from the non-convexity of the problem due to the discrete retirement choice, and how the final segment
covers the (m,n)-space after being interpolated onto a common (across sections) grid. The black region
in panel (b) indicates that the acon-solution is optimal here. See also figure 3.5 panel (a). Only #m = 200
points are used here.

Figure 3.4 illustrates our upper envelope algorithm applied to the acon-segment, in
which at = 0 while dt > 0, in the illustrative model. Panel (a) shows the endogenous
irregular grid. The discrete retirement choice in the illustrative model has generated
non-optimal solutions to the FOCs visible in the lower left part of panel (a). These
non-optimal points are removed by the upper envelope algorithm when interpolating to
the common grid illustrated in panel (b). Finally, panel (b) illustrates that primarily
the north-east part of the region is actually optimal when compared to the remaining
segments in step 5. This part of the segment is highlighted with black dots in panel (b)
while the non-optimal part of the acon segment on the common grid is gray.
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Figure 3.5: Optimal segments. Working.

(a) Optimal segments, t = T − 5. (b) Optimal segments, t = T − 19.

Notes: Figure 3.5 illustrates which segments (ucon, con, dcon and acon) are optimal in the (m,n)-space
when working, zt = 1. Solved using the G2EGM with #m = 600 and parameters in table 3.1.

Figure 3.5 shows which segments (ucon, con, dcon and acon) are optimal in (m,n)-
space for t ∈ {T − 5, T − 19}. This illustrates the complexity of allowing for multiple
occasionally binding constraints. Figure 3.6 shows the optimal pension deposit and con-
sumption functions in period t = T − 19, and the implied optimal post-decision state
functions. Several discontinuities are clearly visible due to the discrete retirement choice,
and are captured precisely by our solution method. The logic behind these discontinuities
is that at certain points in the state space consumers are indifferent between different
planned retirement ages. Infinitesimal changes in mt and nt can thus induce a change in
the planned retirement age, implying a discontinuous jump in, for example, the optimal
level of pension deposits dt and post-decision pension deposits bt.

The supplemental material shows the same figures when smoothing is included in the
model, σε = 0.1 and σ2

η = 0.1. As found in Iskhakov, Jørgensen, Rust and Schjerning
(2015) for the one-dimensional case, adding smoothing via extreme value type one taste
shocks and income uncertainty, reduces the complexity of the solution and removes several
(and potentially all) discontinuities in the policy functions.
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Figure 3.6: Policy Functions. Working.

(a) Consumption, cT−19. (b) Pension deposits, dT−19.

(c) Assets, aT−19. (d) Pension assets, bT−19.

Notes: Figure 3.6 shows optimal policy functions for working households, zt = 1. Solved using the
G2EGM with #m = 600 and parameters in table 3.1.

4 Accuracy and Speed
To illustrate how the accuracy and speed of our proposed solution method is in comparison
to existing methods, we compare it to a fully optimized VFI using multi-starts of a local
derivative-based optimization algorithm to globally search for the optimal choices.21 The
VFI is written almost fully in C++, while only the core parts of the G2EGM is in C

– both algorithms are called from MATLAB.22 All code is available from the authors

21Specifically, we use the Method of Moving Asymptotes from Svanberg (2002), implemented in NLopt
by Johnson (2014). We set xtol_rel and ftol_rel to 10−6.

22A standard alternative to VFI is time iterations (TI), where the optimal choices over an exogenous
pre-decision state grid are found by solving the FOCs. In the presence of non-convexities and multiple
constraints, TI both needs to find all the solutions to the FOCs and determine which constraints
are binding. TI furthermore requires interpolation of both the next period value function and its
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web pages. The problem for the retired households are always solved by standard EGM,
which takes less than a second.

To speed-up both G2EGM and VFI, we pre-construct an interpolant of wt(at, bt)
for a dense exogenous grid of at and bt, such that we can avoid numerical integration
when calculating the value of various candidate choices, and instead rely on interpolation
of wt(at, bt).23 This construction speeds up the solution significantly, when stochastic
elements are included in the model. We have found that grids of at and bt approximately
four times as large as the state grid over mt and nt is optimal in terms of speed and
accuracy. For the G2EGM the same grids over at and bt are used when constructing
nodes with candidate optimal choices for each segment.

Figure 4.1: Accuracy of G2EGM and VFI.

(a) Without smoothing.
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(b) With smoothing.
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Notes: Figure 4.1 shows the accuracy of the G2EGM and VFI. The left panel refers to a model without
smoothing and the right panel refers to a version of the model with smoothing (σε = 0.1 and σ2

η = 0.1).

In VFI we use four different starting values to reduce the risk of reaching a non-
global local optimum. Particularly, we initialize the VFI solver in the solution found for
the preceding grid point (in the nt dimension) and the three corners of the choice set.24

The online supplemental material provides additional implementation details for both
methods.

To define a measure of accuracy, we first use an alternative VFI with a slow but robust
two step discretized global search algorithm. In the first step we search over a tensor grid
of #c = 400 choice candidates in ct ∈ [0,mt] and dt ∈ [0,mt], while we in the second step

derivatives. We found that TI was not competitive with VFI, where the derivatives are not used.
23This is normally not done for VFI when comparing it to EGM. Everything else equal, the speed gains
of EGM, we find, should therefore be smaller than those typically found in the literature.

24The three corners of the choice set are i) low ct, low dt, ii) low ct, high dt, and iii) high ct, low dt.
Initializing the solver at the last found solution is a good initial guess, but relying only on this starting
value can produce significant errors because it tend to locate only a local maximum.
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fine-tune the solution over a discretized tensor grid with 100 choices candidates in each
dimension in a close neighborhood of the previously found maximum. We use #m = 800
points in each dimension of the state space of mt and nt, and henceforth denote the
resulting solution as the truth.

Figure 4.1 shows the mean absolute relative error (MARE) in the found value function
in period t = 1 compared to the truth for both G2EGM and VFI when increasing the
number of nodes, #m, inmt and nt.25 The accuracy of G2EGM and our VFI with multiple
starting values are on the same order of magnitude. Figure 4.2, on the other hand, shows
the associated solution time in minutes. The G2EGM is around 20 times faster than
VFI.26 These results are also robust to adding smoothing (σξ = 0.1 and σ2

η = 0.1).

Figure 4.2: Speed of G2EGM and VFI.
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(b) With smoothing.
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Notes: Figure 4.2 shows the speed of the G2EGM and VFI. The left panel refers to a model without
smoothing (baseline) and the right panel refers to a version of the model with smoothing (σε = 0.1 and
σ2
η = 0.1).

The speed-up of G2EGM relatively to VFI naturally depends on the number of starting
values required for the numerical solver to reach the global maximum in VFI. To be
completely sure that the global optimum has been found a discrete grid search could be
applied (as we do when finding the truth). Such a brute force strategy is clearly very time
consuming. On the other hand, if there is guaranteed to be no non-global local maxima,
a single good guess of the optimum could speed up VFI significantly. However, in models
with non-convexities it seems impossible to determine a priory whether there – for all

25We restrict attention to regions where either at > 0 or dt > 0 because we found that in the con-region
the VFI implementation is particularly sensitive to the placement of nodes due to the very high degree
of curvature of the value function in that region.

26All timings have been computed on a desktop computer with an Intel i7-4770 3.50 Ghz processor.
We only report results from a single threaded implementation as the VFI and G2EGM are equally
parallelizable.
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interesting parameter values – is enough smoothing in the model to achieve this.
As an alternative measure of accuracy we follow the approach proposed by Judd

(1992) and Santos (2000) and calculate the Euler residuals from simulated consumers.
We simulate Ns = 10, 000 individuals and in each of the 18 periods we initialize consumers
as working (zt−1 = 1) with endowments (mt, nt) evenly spaced across [0.5, 5] × [0.01, 5].
In each period, we calculate the consumption Euler residuals,

Ẽi,t ≡ ci,t − Et
[
βRac

−ρ
i,t+1

]− 1
ρ

where expectations are approximated using the same Gauss-Hermite quadrature nodes as
when solving the model. Using observations where it initially is optimal to keep working
and leave some liquid wealth for next period, we calculate a measure of accuracy as the
average log10 of the relative Euler error,

E =
∑Ns
i=1

∑Ts
t=1 log10(Ẽi,t/ci,t)1{zi,t=1,at>0}
∑Ns
i=1

∑Ts
t=1 1{zi,t=1,at>0}

(4.1)

As shown in figure 4.3 the accuracy increases with the number of grid points and the
G2EGM significantly dominates the accuracy of the VFI – again both with and without
smoothing. A value of−2 and−4 of the accuracy measure indicate average approximation
errors of 1 and 0.01 percent of consumption, respectively.

Figure 4.3: Accuracy: Euler Errors of G2EGM and VFI.

(a) Without smoothing.
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(b) With smoothing.
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Notes: Figure 4.3 shows the accuracy of the VFI and G2EGM in terms of the average (across 10,000
simulated individuals over 18 periods) log10 relative Euler error, described in equation (4.1). The left
panel refers to a model without smoothing (baseline) and the right panel refers to a version of the model
with smoothing (σε = 0.1 and σ2

η = 0.1).
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4.1 Higher Dimensions

In order to asses the speed and accuracy gains of G2EGM in higher dimensions we extend
the illustrative model with a labor supply decision and human capital accumulation in
the spirit of Imai and Keane (2004), but with an upper bound on the labor supply choice.
Specifically, we augment the utility function with dis-utility of labor, lt, on the intensive
margin for working households,

u(ct, 1, lt) = c1−ρ
t

1− ρ − ϕ
l1+γ
t

1 + γ
− α (4.2)

and introduce (stochastic) accumulation of human capital, kt, according to

qt = (1− δ)kt + lt (4.3)
kt+1 = ηt+1qt (4.4)

where δ is the depreciation rate of human capital, qt is end-of-period human capital, and
ηt+1 is a permanent shock to human capital with a mean of one. Re-defining resources as
simply mt = Rat, and using the wage function w(kt) = rkkt, end-of-period assets is now
given by

at = mt + rkktlt − ct − dt (4.5)

The labor supply is constrained to be in the range [0, l].
The full recursive formulation of the problem is given in the online material together

with the chosen parametrization. The details on the implementation of the G2EGM for
solving this 3-dimensional model is also relegated to the online material. As there are
also jumps in the policy function for lt we augment the multi-start approach for VFI
with a low and high labor supply choice, and then start from each corner of the resulting
budget set.

G2EGM is again around 20 times faster than VFI, for a given number of grid points
and the Euler-errors of our method are substantially smaller. Figure 4.4 compares the
accuracy and speed of G2EGM and VFI in solving the extended illustrative model. Mem-
ory and time constraints imply that it is unfeasible to solve the model using very fine
grids. Consequently the left panel shows the accuracy of the two methods measured in
terms of the average log10 of the relative Euler error (see equation (4.1) above) for grids
with up to 150 points in each dimension. The right panel shows the associated time (in
minutes) required to solve the model.
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Figure 4.4: 3-Dimensionsal Model: Accuracy and Speed of G2EGM and VFI.
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(b) Speed.
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Notes: Figure 4.4 shows the accuracy of the VFI and G2EGM in terms of the average (across 10,000
simulated individuals over 18 periods) log10 relative Euler error, described in equation (4.1) in the left
panel. The right panel shows the associated time spent solving the model for both methods.

5 General Model Class
This section defines a broad class of stochastic dynamic programming models in terms
of necessary and sufficient conditions for which our G2EGM is applicable. In the online
supplemental material, we show how the illustrative model presented in section 2 fits into
this class.

5.1 Bellman Equation

We begin from a very general stochastic dynamic programming model containing both
discrete and continuous states and choices. We assume that the continuous choices only
affect a subset of the continuous states, and not the discrete states. This allows us to
decompose the state space into two parts: The first part consists of a mixed vector of
discrete and continuous states st ∈ S whose transition is unaffected by the continuous
choices. The second part consists of k continuous states mt ∈ M(st) ⊆ Rk whose
transition depend on both the discrete and continuous choices. Denoting the discrete
(or discretized) choices zt ∈ Z(st), the (stochastic) transition function for st is given
by Γs(st, zt). Denoting the l continuous choices by ct ∈ C(st, zt,mt) ⊆ Rl, where we
assume that C(st, zt,mt) is bounded, the (stochastic) transition function for mt is given
by Γm(st, zt,mt, ct), which is assumed to be differentiable except at a finite number of
kinks or discontinuities.27

27Continuity and differentiability is always wrt. (mt, ct) unless noted otherwise.
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Denoting the per-period utility flow by u(st, zt,mt, ct), which is assumed to be differ-
entiable, and assuming exponential discounting with a factor of β, the Bellman equation
for the model is28

Vt(st,mt, εt) = max
zt,ct

u(st, zt,mt, ct) + σεε(zt) + βEt [Vt+1(st+1,mt+1)] (5.1)
s.t.

st+1 = Γs(st, zt) (5.2)
mt+1 = Γm(st, zt,mt, ct) (5.3)

zt ∈ Z(st) (5.4)
ct ∈ C(st, zt,mt) (5.5)

where ε(zt) is an iid extreme value type I taste shock across the discrete choices and σ2
ε

is proportional to the variance of these shocks.
As always, we assume that there is a unique solution to the problem in (5.1)-(5.5),

and we denote the optimal policy functions by z?t (st,mt) and c?t (st,mt). Given some
terminal condition, our goal will be to find these optimal policy functions using backwards
induction on finite compact grids Ŝ ⊆ S and M̂(st) ⊆ M(st), where we rely on some
form of interpolation between grid points and extrapolation outside.

5.2 Segments

As our G2EGM treats constrained and unconstrained choices differently, as the former
satisfy FOCs while the latter does not, it is helpful to reformulate the problem by intro-
ducing an additional discrete choice over what we call segments, where the continuous
choices have to satisfy more strict requirements. In each segment, indexed by qt, we use
c+
t to denote the set of l − r(qt) unconstrained choices, and c−t to denote the set of the
r(qt) ≤ l constrained choices. The unconstrained choices, c+

t , are without loss of gener-
ality required to belong to an open, convex and bounded set C+(st, zt,mt, qt) ⊆ Rk−r(qt),
where the derivative of Γm(st, zt,mt, ct) wrt. to c+

t always exists and are continuous.
Non-differentiabilities in Γm(st, zt,mt, ct) wrt. some elements in ct can, for example,
arise due to kinks or jumps in tax rates or interest rates. The constrained choices, c−t , are
on the other hand, almost without loss of generality, given by the differentiable function
c̆(st, zt,mt, c+

t , qt) ∈ Rr(qt) with both states and unconstrained choices as input argu-
ments. We denote the set of segments by Q(st, zt) such that the original choice set is

28For notational simplicity the Bellman equation given here does not include Epstein-Zin-Weil prefer-
ences, but our method also applies to models with this type of recursive utility.
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recovered as a union over all segments,

C(st, zt,mt) = ∪qt∈Q(st,zt)



ct = c(c−t , c+

t ) | c+
t ∈ C+(st, zt,mt, qt),

c−t = c̆(st, zt,mt, c+
t , qt)



 (5.6)

where c(c−t , c+
t ) stacks the unconstrained and the constrained choices correctly. For direct

constraints, such as dt = 0 in the illustrative model from section 2, the function c̆(•) will
be a point for given st, zt and qt, and thus independent of mt and c+

t . For borrowing
constraints and collateral constraints the function c̆(•) will typically not be independent
of mt and c+

t . Introducing a collateral constraint at ≥ θbt in the illustrative model
would, for example, imply that in the segment where this collateral constraint is binding,
we would have ct = mt − θnt − (dt + θ(dt + g(dt)).29

In total, the reformulated problem can be written as

Vt(st,mt, εt) = max
zt,qt,c+

t

u(st, zt,mt, ct) + σεε(zt) + βEt [Vt+1(st+1,mt+1)] (5.7)

s.t.
st+1 = Γs(st, zt) (5.8)

mt+1 = Γm(st, zt,mt, ct) (5.9)
zt ∈ Z(st) (5.10)
qt ∈ Q(st, zt) (5.11)

c+
t ∈ C+(st, zt,mt, qt) (5.12)

c−t = c̆(st, zt,mt, c+
t , qt) (5.13)

ct = c(c−t , c+
t ) (5.14)

Denoting the optimal segment choice by q?t (st,mt), and the discrete-choice-specific op-
timal policy function for the unconstrained continuous choices by c+?

t (st,mt, zt, qt), we
have that the over-arching optimal policy function for the continuous choices is given by

c?t (st,mt) = c(c̆(st, z?t ,mt, c+?
t , q?t ), c+?

t ) (5.15)

To simplify notation, we henceforth use the composite variable,

xt = (st, zt, qt) (5.16)

to denote the given discrete state (st), the current discrete choice (zt) and the current

29This also illustrates that there sometimes might be a freedom of choice wrt. which choices are considered
to be constrained in a given segment as dt could also alternatively be expressed as a deterministic
function of mt, nt and ct.
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segment (qt).

5.3 Conditions

To state the first condition for the applicability of G2EGM, we first introduce the notion
of post-decision states.

Definition 1. We say that a function of states and choices

at = a(xt,mt, ct) ∈ Rh (5.17)

is a post-decision state function if the implied post-decision states at are a sufficient
statistic in the sense that they contain all the relevant information for determining the
probability distribution of future states,

mt+1 = Γm(xt,mt, ct) = Γm(xt, at) (5.18)
E [Vt+1(st+1,mt+1) |xt,mt, ct] = E [Vt+1(st+1,mt+1) |xt, at] (5.19)

such that we can define the post-decision value function as

wt(xt, at) ≡ E [Vt+1(Γs(xt),Γm(xt, at)) |xt, at] (5.20)

Hereby we have:

Condition 1 (Post-decision states). There exists a differentiable post-decision state func-
tion a(xt,mt, ct).

Setting at = [mt, ct] we see that a (degenerate) post-decision state function always
exists, and the requirement that it should be differentiable is weak as we are conditioning
on xt. In the illustrate model a kink or discontinuity in g(dt) implying that bt would not be
globally differentiable as a function of dt, could, for example, be handled by introducing
segments where dt is respectively below, at, and above this kink or discontinuity.

The efficiency of our algorithm, however, rely on the dimensionality of at being lower
than the full dimensionality of the state and choices spaces because we otherwise in
practice are simply doing a time iteration over a fixed grid of mt with discretized guesses
for the optimal choices. Limiting the dimensionality of at is, however, not always possible.
In the illustrative model, we would e.g. need to include nt and dt separately as post-
decision states (instead of combined in bt), if we extended the model with a stochastic
re-evaluation factor κt+1, not known in period t, but affecting next-period pension assets
only through period t pre-decision pension assets – i.e. if nt+1 = Rb(κt+1nt + dt + g(dt)).

Given a post-decision state function, the second condition highlighting the need for
optimality conditions for the unconstrained choices can be stated as:
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Condition 2 (FOCs are at least necessary). Vt+1(st+1,mt+1) is differentiable in mt+1 at
optimal unconstrained choices such that we can derive l − r(qt) necessary FOCs

01×(l−r) = uc(xt,mt, ct)cc+(xt,mt, c+
t ) (5.21)

+βwa,t(xt, at)ac(xt,mt, ct)cc+(xt,mt, c+
t )

≡ f(mt, c+
t ; xt, at, c−t )

where uc(xt,mt, ct) is of dimension 1 × l, cc+(xt,mt, c+
t ) is of dimension l × (l − r(qt)),

wa,t+1 (xt, at) is of dimension 1× h and ac(xt,mt, ct) is of dimension h× l.

The differentiability of the value function can, for example, be checked by applying
the recently proposed general approach in Clausen and Strub (2013), which we apply to
our illustrative model in the online supplemental material.

Based on the first and second condition, we can now define the endogenous grid method
(EGM) in general terms for models with multiple states, choices, and constraints.

Definition 2. The endogenous grid method (EGM) operator E

(mt, c+
t ) = E(xt, at, c−t ) (5.22)

takes the “parameters” xt, at and c−t , as given, and returns a pair of states and choices
(mt, c+

t ) ∈M(st)× C+(xt,mt) by solving the equation system

01×(l−r+h) =

 f

(
mt, c+

t ; xt, at, c−t
)

at − a
(
xt,mt, c

(
c−t , c+

t

))

 (5.23)

≡ F
(
mt, c+

t ; xt, at, c−t
)

where F is a function returning the stacked discrepancies in the FOCs and post-decision
state equations implied by a given guess of (mt, c+

t ).

Relying on condition 2, we know that c+ = c+?
t (xt,mt) is a solution to the equa-

tion system in (5.23) for given xt and mt together with c−t = c̆(xt,mt, c+
t ) and at =

a(xt,mt, c(c−t , c+
t )). If the FOCs are only necessary, but not sufficient, then the reverse

does not hold; though we for given xt, at and c−t find a pair (mt, c+
t ) solving the equation

system (5.23), it does not follow that c+
t is the optimal choice at mt (given xt). We will

therefore only refer to a found c+
t as candidate optimal choices at mt.

Finding a solution to the equation system (5.23) is in general very fast because the
numerical integration underlying wa,t(xt, at) (in equation (5.21)) only needs to be per-
formed once for each unique at-point (even across segments), and F otherwise purely
consists of known functions, which can be evaluated easily. If the inverse of F exists and
is analytical, the need for root-finding can be eliminated completely.
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The above definition of the EGM operator allows us to define the EGM set containing
pairs of states and candidate optimal choices, and its upper envelope.

Definition 3. We say that O(xt;A) is the EGM node set for a given set A, if it is given
by applying the EGM operator to each element in A

O(xt;A) =
{

(mt, c+
t ) = E(xt, at, c−t ), (at, c−t ) ∈ A

}
(5.24)

Given the value-of-choice defined as

ṽ(xt,mt, c+
t ) = u(xt,mt, c(c−t , c+

t )) + βwt+1(xt, a(xt,mt, c(c−t , c+
t ))) (5.25)

we further say the the corresponding upper envelope set is given by removing all pairs,
where there exists another pair with the same states, but unconstrained choices implying
a higher value-of-choice,

O(xt;A) =
{

mt ∈M(st), c+
t = arg max

c+
ṽ(xt,mt, c+

t ) s.t. (mt, c+) ∈ O(xt;A)
}

(5.26)

A particularly interesting, and easily constructible, choice of A is the set of post-
decision states and constrained choices implied by a feasible choice somewhere in the
state space, which naturally nests the set of post-decision states and constrained choices
implied by an optimal choice,

A(xt) =




c− = c̆(xt,m, c+),
a = a(xt,m, c(xt,m, c+))

, (m, c+) ∈M(st)× C+(xt,m)


 (5.27)

⊇ A?(xt)

=




c− = c̆(xt,m, c+?
t (xt,m)),

a = a(xt,m, c?t (xt,m))
, m ∈M(st)





A central question now is whether we can ensure that there in the limit will be no pairs
of states and optimal choices which O(xt;A) will not contain if a discrete approximation
A ≈ A(xt) becomes dense enough. To ensure this, we introduce the following uniqueness
condition:

Condition 3 (Uniqueness). For given “parameters” xt and (c−t , at) ∈ A?(xt) the equation
system (5.23) must have a unique solution in (mt, c+

t ) ∈M(st)× C(xt,mt).30

As a parallel to the proof in Iskhakov, Jørgensen, Rust and Schjerning (2015), for the

30The uniqueness condition only relates to optimal choices, i.e. where (c−t ,at) ∈ A?(xt); for any
(c−t ,at) ∈ A(xt)\A?(xt) we do not need uniqueness because any solutions found will not be opti-
mal.
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one dimensional case, we now have:

Lemma 1 (All solutions). As the approximation Â becomes infinitely dense on a compact
subset ⊆ A(xt), in the sense that the maximum distance between all adjacent points
approaches zero, there are no pairs of states and optimal unconstrained choices, implying
post-decision states and constrained choices in Â, which will not be included in O(xt; Â)
if conditions 1-3 are satisfied.

Proof. By conditions 1-3 the equation system (5.23) constitutes a well defined parametric
specification of a curve of pairs of states and all candidate unconstrained choices for
given xt, where (at, c−t ) plays the role of the parameters. Remembering that all optimal
unconstrained choices are candidate unconstrained choices, this ensures that in limit as
(at, c−t ) runs through all the values in Â, no pairs of states and optimal unconstrained
choices, implying post-decision states and constrained choices in Â, are not found.

This immediately imply that the G2EGM will work in the limit:

Lemma 2 (Upper envelope). As the approximations Â, for all st ∈ Ŝ, zt ∈ Z(st) and
qt ∈ Q(st, zt), becomes infinitely dense on a compact subset

Â ≈




c− = c̆(xt,m, c+),
a = a(xt,m, c(xt,m, c+))

,
(
m, c+

)
∈ M̂(st)× C+(xt,m)





the value function for all st and mt in Ŝ × M̂(st) is given by

V (st,mt) = max
zt,qt,c+

t

ṽ(st, zt, qt,mt, c+
t )

s.t.
(mt, c+

t ) ∈ O(st, zt, qt; Â)

and the optimal policy functions are the maximizing arguments.

5.4 Verifying Uniqueness

Verifying condition 3 directly is, however, typically not possible because it through A?(xt)
relies on the endogenous function c?+t (xt,mt) (see equation (5.27)). A feasible alternative
is to instead consider the following sufficient requirement based on the constructible set
A(xt).

Lemma 3 (Sufficient requirement). Condition 3 is satisfied if F is an injection in mt

and c+
t for all (c−t , at) ∈ A(xt), i.e.

(m′t, c+′
t ) 6= (m′′t , c+′′

t )→ (5.28)
F (m′t, c+′

t ; xt, at, c−t ) 6= F (m′′t , c+′′
t ; xt, at, c−t )
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for m′t, m′′t ∈M(st), c+′
t ∈ C+(xt,m′t), and c+′′

t ∈ C+(xt,m′′t ).

Proof. The required injectivity is a sufficient requirement because if we for a (c−, a) ∈
A?(xt) ⊆ A(xt) find a solution F (m′t, c+′

t ; xt, a, c−) = 0, we then know there can be no
other optimal choices with the same (c−, a).

Determining whether F is an injection in mt and c+
t (thus fulfilling lemma 3 and

therefore condition 3) can often be proven by construction because if F−1 exists then
F is an bijection and therefore also an injection; and this is the case even if F−1 is not
analytical.31

Alternatively, the injectivity of F can be proven using abstract sufficiency results on
the injectivity of functions on convex sets (e.g. Gale and Nikaido (1965) where sufficiency
is established by requiring that the Jacobian of F wrt. mt and c+

t is always positive (or
negative) semi-definite), or a global inverse function theorem.32

The restriction of the uniqueness requirement in condition 3 can be illustrated in terms
of a necessary requirement on the injectivity in the post-decision states and constrained
choices implied by the optimal unconstrained choices. Specifically we have

Lemma 4 (Necessary requirement). A necessary requirement for condition 3 is that the
optimal choice function must imply that the combined post-decision states and constrained
choices is an injection in mt, i.e.

m′t 6= m′′t →
a(xt,m′t, c?t (xt,m′t)) 6= a(xt,m′′t , c?t (xt,m′′t )), and/or
c̆(xt,m′t, c+?

t (xt,m′t)) 6= c̆(xt,m′′t , c+?
t (xt,m′′t ))

(5.29)

for m′t, m′′t ∈M(st).

Proof. The required injectivity is necessary because we otherwise for some m′t,m′′t ∈
M(st) would have a violation of the uniqueness condition by

(m′t, c+?
t (xt,m′t)) 6= (m′′t , c+?

t (xt,m′′t )) → F (xt,m′t, c+?
t (xt,m′t); a, c−)

= F (xt,m′′t , c+?
t (xt,m′′t ); a, c−)

= 0

where

a = a(xt,m′t, c?t (xt,m′t)) = a(xt,m′′t , c?t (xt,m′′t ))
c− = c̆(xt,m′t, c+?

t (xt,m′t)) = c̆(xt,m′′t , c+?
t (xt,m′′t ))

31Iskhakov (2015) presents sufficient requirements for F to be analytically invertible in the unconstrained
case. His proof can easily be extended to cover similar cases of non-analytical invertibility.

32In principle it might be feasible to put forward necessary and sufficient requirements on the model
fundamentals in order to verify condition 3, but we leave this task to future work.
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In the one-dimensional case this result is equivalent to the requirement of a monotonic
savings function discussed by Fella (2014) and Iskhakov, Jørgensen, Rust and Schjerning
(2015).

The restrictiveness of the uniqueness requirement can also be elaborated on in terms
of our illustrative model, where we for the unconstrained segment have

F (mt, c+
t ; xt, at, c−t ) =




uc(ct)− βwa,t+1(at, bt)
−wa,t(at, bt) + wb,t(at, bt)(1 + gd(dt))

at − (mt − ct − dt)
bt − (nt + dt + g(dt))




We see if gd(dt) were independent of dt then F would not be invertible such that condition
3 would not be satisfied. Fixing at and bt we could still easily find ct, but as the second
equation no longer would give us dt, we would have three unknowns for the last two
equations, and no unique solution.

6 Solution Method
The upper envelope set O(xt; Â), given by equation (5.26), is theoretically satisfactory,
but not useful in practice. The reason is that it for finite Â the set O(xt; Â) might contain
pairs of states and choices where the choices are not optimal because the dominating pair
with the same states (but the globally optimal choices) have not have been created yet.
In practice, we therefore need a more robust upper envelope set construction procedure
also using information from “neighboring” pairs with similar states.

In order to do so, we first define the following two objects:

Definition 4. We let č+(mt;G) denote interpolation of c+
t on a grid

G = G(T ) =
{

(mt, c+
t ) = E(xt, at, c−t ) | (at, c−t ) ∈ T

}

of (mt, c+
t )-nodes created by the EGM, where T is a set of (at, c−t )-nodes.

Definition 5. We let S(Â) denote a set where each element is collection of simplex
corners such that the combined simplexes covers Â at least once.

For finite grids M̂ over mt and Â over (at, c−t ), this let us consider the following
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alternative upper envelope set,

Õ(xt;M̂, Â) =





mt ∈ M̂,

c+
t = č+(mt;G(T ?)),
T ? = arg maxT ∈S(Â) ṽ(xt,mt, č+(mt;G(T ))),





(6.1)

where the unconstrained choices are found by local interpolation, and only the pairs with
choices implying the highest value-of-choice are kept.

Given a certain degree of smoothness of the derivatives wt,a, uc, and ac in the neigh-
borhood of the optimal choices, and the implied post-decision states, the F -function will
have a local inverse. For a small change in at only small changes in (mt, c+

t ) will thus
be required to keep the equation system (5.23) satisfied. Once Â is dense enough the
interpolation will therefore not be across any discontinuities in the policy functions, and
the implied error will be small.

In full detail, the G2EGM solution method consists of the following steps:

Step 0. Construct grids and simplexes, find terminal period solution, and set time-index
to t = T − 1.

Step 0a. For each (sT , zT ) construct:
i) a common (regular) grid over (pre-decision) states M̂ = {m1, . . . ,m#m}.
ii) a common (regular) grid over post-decision states Â = {a1, . . . , a#a}.
iii) all the qt-specific grids over tuples of post-decision states and con-
strained choices Âqt = {(a1, c−1 ), . . . , (a#qac , c−#qac

)}.
Step 0b. For all (st, zt), and each qt, divide the grid Âqt into simplexes (2D:

triangles, 3D: tetrahedra, etc.) covering its entire span at least once,
S(Âqt).

Step 0c. For all (sT , zT ):
i) find the discrete-specific terminal value- and policy functions, vT (sT , zT ,mT )
and c?T (sT , zT ,mT ), by solving the fully intra-temporal problem using
standard tools.
ii) compute the value function derivatives vm,T (sT , zT ,mT ).
iii) construct interpolants for the value function v̌T

(
sT , zT ,mT ;M̂

)

and its derivatives v̌m,T
(
sT , zT ,mT ;M̂

)
(henceforth all interpolants

are indicated with a •̌ ).

Step 1. For all (st, zt), construct interpolants of the expected next-period value function

33



A General Endogenous Grid Method

and associated derivatives which all take post-decision states as inputs,

w̌t(st, zt, at; Â) = Et [EVt+1(st, zt,mt+1)] (6.2)

w̌a,t(st, zt, at; Â) = Et


 ∑

Z(st+1)
Pr(z|st+1,mt+1)v̌m,t+1(st+1, z,mt+1)


 (6.3)

where mt+1 = Γm (st, zt, at) and Et [•] = E [• | st, zt, at] is computed using some
form of numerical integration.33 The closed form expectations over taste shocks
in (6.2) is given by the log-sum,

EVt+1(st+1, zt+1,mt+1) ≡




σε log

(∑
z∈Z(st+1) v̌t+1(st+1, z,mt+1)/σε

)
if σε > 0

maxz∈Z(st+1) v̌t+1(st+1, z,mt+1) if σε = 0

and the choice-probabilities are given by the standard multinomial logit,

Pr(z|st+1,mt+1) ≡





exp(v̌t+1(st+1,z,mt+1)/σε)∑
k∈Z(st+1) exp(v̌t+1(st+1,k,mt+1))/σε) if σε > 0

1
{
z = arg maxz∈Z(st+1) v̌t+1(st+1, z,mt+1)

}
if σε = 0

The log-sum and choice probabilities reduce to the max-operator and indicator
function, respectively, if there are no taste shocks in the model, σε = 0.

Step 2. For all (st, zt), and each qt, construct the segment-specific optimal policy func-
tions c?t (st, zt,mt, qt) and the associated implied value-of-choice functions vt(st, zt,mt, qt)
over the common grid M̂.

Step 2a. For each mt in M̂ initialize vt(st, zt,mt, qt) = −∞.

Step 2b. For all nodes (at, c−t ) in Âqt , solve the equation system in (5.23),

F (•) =

 f(mt, c+

t ; st, zt, qt, ti, c−t )
at − a(st, zt,mi, c(c−t , c+

t ))


 = 0

for the l− r(qt) unconstrained choices c+
t and k states mt where f (•)

contains the FOC discrepancies. (For further details on how to solve
this equation system analytically or by root-finding see section 5).

Step 2c. For all T ∈ S(Âqt) (see step 0b):
i) construct the k-dimensional bounding box, and use bisection search
in each dimension to find the sub-grid M̂ ⊂ M̂ inside it.

33Both interpolants w̌t and w̌a,t imply an interpolation of an interpolation, and in order to avoid a
precision loss, it is therefore important that the grid over post-decision states Â, is dense relative to
the grid over pre-decision states M̂.
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ii) for each mt in M̂ interpolate the unconstrained choices č?+ us-
ing barycentric interpolation (or extrapolation if the coordinates are
not too negative), and calculate the optimal choices and the value-of-
choice34

c̃ = c(c−t , č?+(mt;G(T )))
ṽ = u(st, zt,mt, c̃) + βw̌t+1(st, zt, a(st, zt,mt, c̃))

and if ṽ > vt(st, zt,mi, q) update

vt(st, zt,mt, qt) = ṽ

c?t (st, zt,mt, qt) = c̃

Step 2e. For all mt ∈ M̂ with vt(st, zt,mt, qt) = −∞ in the ”close neighbor-
hood” of a m′t with vt(st, zt,m′t, qt) 6= −∞ use nearest neighbor inter-
polation to interpolate the choices and calculate the implied value-of-
choice.35

Step 3. For all (st, zt), find the over-arching optimal continuous choices and construct
interpolants for the value function and its derivatives.

Step 3a. Find the overarching maximum across qt-cases using the max-operator
for each mt in M̂, i.e.

q?t (st, zt,mt) = arg max
qt

vt(st, zt,mt, qt)

and set

vt(st, zt,mt) = vt(st, zt,mt, q
?
t (st, zt,mt))

c?t (st, zt,mt) = c?t (st, zt,mt, q
?
t (st, zt,mt)

Step 3b. Terminate if t = 1, else:
i) compute the value function derivatives vm,t(st, zt,mt).
ii) construct the interpolants v̌t(st, zt,mt;M̂) and v̌m,t(st, zt,mt;M̂).
iii) decrease the time index to t = t− 1, and return to step 1.

34Interpolating the value-of-choices separately can create a large loss of precision.
35Alternatively, VFI could be used to determine the optimal choices at these few nodes.
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7 Concluding Remarks
We have provided a generalized version of the endogenous grid method (EGM) originally
proposed by Carroll (2006) to solve one-dimensional continuous choice models. While
the EGM has been generalized in recent research, our parsimonious solution method is
the first to simultaneously handle i) multiple continuous states and choices, ii) multiple
occasionally binding constraints, and iii) discrete choices as well as other non-convexities.
Furthermore, we explicitly provide necessary and sufficient conditions for when our so-
lution method can be applied, and we define a general model class in terms of those
conditions.

There is a vast range of models that can be solved using our proposed method. We
show that our proposed generalized EGM is more than an order of magnitude faster than
standard value function iteration in solving an illustrative model of liquid and illiquid
assets with a discrete retirement choice, without reducing numerical accuracy. In turn,
our method makes it possible to estimate and perform policy analysis from much richer
models than what have typically been feasible in the existing literature. Our proposed
method, we envision, will provide applied researchers with a powerful, yet relatively
easy to implement, numerical tool to investigate economic questions with more realistic
economic models. For example, including more preference heterogeneity into complex
dynamic economic models is an interesting avenue for future research, and the speed gain
from our proposed solution method would enable inclusion of such heterogeneity.
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A Additional Figures and Tables

Figure A.1: Optimal segments - with smoothing (σε = 0.1 and σ2
η = 0.1).

(a) Optimal sections, t = T − 5. (b) Optimal sections, t = T − 19.

Notes: Figure A.1 illustrates which qt-segments (ucon, con, dcon and acon) are optimal in the (m,n)-
space for t = T − 5 and t = T − 19. Solved using G2EGM, #m = 600.
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Figure A.2: Policy functions - with smoothing (σε = 0.1 and σ2
η = 0.1).

(a) Consumption, cT −19. (b) Pension deposits, dT −19.

(c) Assets, aT −19. (d) Pension assets, bT −19.

Notes: Figure A.2 shows optimal policy functions for working households. Solved using G2EGM, #m =
600.
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Figure A.3: Policy functions - 3-dimension model. G2EGM and VFI.

(a) Consumption, cT −19, G2EGM. (b) Consumption, cT −19, VFI.

(c) Deposits, dT −19, G2EGM. (d) Deposits, dT −19, VFI.

(e) Labor, lT −19, G2EGM. (f) Labor, lT −19, VFI.

Notes: Figure A.3 shows optimal policy functions for working households. Solved using G2EGM and
VFI, #m = 150. For k ≈ 20.
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B Details on the Illustrative Model

B.1 Value Function Derivatives, vm,t(1,mt, nt) and vn,t(1,mt, nt)

B.1.1 vm,t(1,mt, nt)

To determine the derivative of vt(1,mt, nt) wrt. mt note that

vm,t(1,mt, nt) = c?(mt, nt)−ρc?m(mt, nt)
+βwa,t(at, bt)(1− c?m(mt, nt)− d?m(mt, nt))
+βwb,t(at, bt)(1 + g(d?(mt, nt))d?m(mt, nt)

We need to consider three different cases:

1. If c?(mt, nt) < mt−d?(mt, nt) and d?(mt, nt) > 0 we can use a standard envelope
argument to show that c?m(mt, nt) = d?m(mt, nt) = 0. We thus have

vm,t(1,mt, nt) = βwa,t(at, bt)
= c?(mt, nt)−ρ

where the second equality is due to the FOC in equation (3.6).

2. If c?(mt, nt) = mt − d?(mt, nt) and d?(mt, nt) > 0 we can still use an envelope
argument to show d?m(mt, nt) = 0. Furthermore we directly have c?m(mt, nt) = 1
such that

vm,t(1,mt, nt) = c?(mt, nt)−ρ

3. If c?(mt, nt) = mt−d?(mt, nt) and d?(mt, nt) = 0 we directly have c?m(mt, nt) = 1
and d?m(mt, nt) = 0 such that

vm,t(1,mt, nt) = c?(mt, nt)−ρ

In sum, we thus have that

vm,t(1,mt, nt) = c?(mt, nt)−ρ (B.1)

.
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B.1.2 vn,t(1,mt, nt)

To determine the derivative of vt(1,mt, nt) wrt. nt note that

vn,t(1,mt, nt) = c?(mt, nt)−ρc?n(mt, nt)
+βwa,t(at, bt)(c?n(mt, nt)− d?n(mt, nt))
+βwb,t(at, bt)(1 + (1 + g(d?(mt, nt))d?n(mt, nt))

We need to consider three different cases:

1. If c?(mt, nt) < mt−d?(mt, nt) and d?(mt, nt) > 0 we can use a standard envelope
argument to show that c?n(mt, nt) = d?n(mt, nt) = 0. We thus have

vn,t(1,mt, nt) = βwb,t(at, bt)

2. If c?(mt, nt) = mt − d?(mt, nt) and d?(mt, nt) > 0 we can still use an envelope
argument to show d?n(mt, nt) = 0 such that we also have c?n(mt, nt) = 0. We
thus have

vn,t(1,mt, nt) = βwb,t(at, bt)

3. If c?(mt, nt) = mt−d?(mt, nt) and d?(mt, nt) = 0, we directly have d?n(mt, nt) =
0 such that we also have c?n(mt, nt) = 0. We thus have

vn,t(1,mt, nt) = βwb,t(at, bt)

In sum, we thus have that

vn,t(1,mt, nt) = βwb,t(at, bt) (B.2)

.

B.2 Grids

All grid-vectors are constructed as recursions where the i’th element is given by

i ≥ 2 : xi = xi−1 + x− xi−1

(n− i+ 1)φ (B.3)
x0 = x

Given #m, and using the relative parameters in table B.1, the common and case-specific
grids are then created as follows:

• common state grid (M̂):
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Table B.1: Grids.

#η #a #aq #qacon φm φn m n a b

8 2 ·#m 2 ·#a
1
4#a 1.1 1.25 10 m+ 2 m− 2 n+ 2

– −→m = {0, . . .m |#m, φm},
– −→n = {0, . . . n |#m, φn},
– M̂ = −→m ×−→n .

• common post-decision state grid (Â):

– −→a = {0, . . . a |#a, φn},
– −→b =

{
0, . . . b |#a, φn

}
,

– Â = −→a ×−→b .

• post-decision state grids for sections (Âqt):

– common: −→aq = {0, . . . a |#qa, φm},
−→
bq =

{
0, . . . b |#qb, φn

}
.

– ucon: Âucon = −→aq ×
−→
bq .

– con: Âcon = M̂.

– dcon: Âdcon = Âucon × {0}.
– acon: Âacon = {0}×

{
0, . . . b |#qacon, φn

}
×{c (b) . . . , c (b) |#qacon, φm},

c (b) = ((χ+ 1) βwb,t (0, b))−
1
ρ c (b) = (βwb,t (0, b))−

1
ρ .

B.3 Value Function Iteration

Step 0. Construct grids, find terminal period solution, and set time-index to t = T − 1.

Step 0a. For each (sT , zT ), construct:
i) a (rectilinear) grid over (pre-decision) states M̂ = {m1, . . . ,m#m}.
ii) a (rectilinear) grid over post-decision states Â = {a1, . . . , a#a}.

Step 0b. For all (sT , zT ):
i) find the choice-specific terminal value- and policy functions, vT (sT , zT ,mT )
and c?T (sT , zT ,mT ), by solving the fully intra-temporal problem using
standard tools.
ii) construct an interpolant for the value function v̌T

(
sT , zT ,mT ;M̂

)

(henceforth all interpolants are indicated with a •̌ ).
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Step 1. For all (st, zt) construct an interpolant of the expected next-period value func-
tion which post-decision states as input,

w̌t(st, zt, atÂ) = Et [EVt+1(st, zt,mt+1)] (B.4)

where mt+1 = Γm (st, zt, at) and Et [•] = E [• | st, zt, at] is computed using some
form of numerical integration. The closed form expectations over taste shocks
in (B.4) is given by the log-sum,

EVt+1(st+1, zt+1,mt+1) ≡




σε log

(∑
z∈Z(st+1) v̌t+1(st+1, z,mt+1)/σε

)
if σε > 0

maxz∈Z(st+1) v̌t+1(st+1, z,mt+1) if σε = 0

Step 2. For all (st, zt) find the over-arching optimal continuous choices and construct
the interpolant for the value function.

Step 2a. For each mt in M̂ search for the global constrained optimal choices
using a numerical optimization routine,

vt(st, zt,mt) = max
c
u(st, zt,mt, c) + βw̌t(st, zt, a(st,mt, c))

c?t (st, zt,mt) = arg max
c
u(st, zt,mt, c) + βw̌t(st, zt, a(st,mt, c))

where unfeasible choices are not considered.

Step 2c. Terminate if t = 1, else:
i) construct the interpolant v̌t

(
st, zt,mt;M̂

)
.

ii) decrease the time index to t = t− 1, and return to step 1.
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B.4 Relation to the General Model Class

In terms of the defined broad model class, the illustrative model is given by

st = zt−1 ∈ {0, 1} = S

zt = zt ∈




{0, 1} if zt−1 = 1

0 if zt−1 = 0
= Z(st)

mt =

 mt

nt


 ∈ R2

+ =M(st)

at =

 at

bt


 ∈ R2

+

ct =

 ct

dt


 ∈ {ct, dt | ct, dt ≥ 0, ct + dt ≤ mt} = C(st, zt,mt)

Γs(st, zt) = zt

Γm(st, zt,mt, ct) =

 Raat + ηt+1

Rbbt




and we have the four qt-cases uncon, con, dcon and acon. The derivative of the continuous
choices with respect to the unconstrained choices are respectively

cc+

(
xt,mt, c+

t , qt = 0
)

=



∂ct
∂ct

∂ct
∂dt

∂dt
∂ct

∂dt
∂dt



dt>0,ct+dt<mt

=

 1 0

0 1




cc+

(
xt,mt, c+

t , qt = 1
)

= ”∅”

cc+

(
xt,mt, c+

t , qt = 2
)

=



∂ct
∂ct
∂dt
∂ct



dt=0,ct+dt<mt

=

 1

0




cc+

(
xt,mt, c+

t , qt = 3
)

=



∂ct
∂dt
∂dt
∂dt



dt>0,ct+dt=mt

=

 −1

1




where cc+

(
mt, c+

t , q = 2
)

= ”∅” indicates that in this case there are no unconstrained
choices.
The derivative of the post-decision state function is

ac (xt,mt, ct) =



∂at
∂ct

∂at
∂dt

∂bt
∂ct

∂bt
∂dt


 =


 −1 −1

0 1 + gd(dt)




and we get the FOCs:
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f (•, q = 0) =

 0

0



′

=



∂u
∂ct
∂u
∂dt



′ 
 1 0

0 1


+ β


 wa,t(at, bt)
wb,t(at, bt)



′ 
 −1 −1

0 1 + gd(dt)




 1 0

0 1




m

 0

0



′

=

 uc (ct)

0


+ β


 −wa,t(at, bt)
−wa,t(at, bt) + wb,t(at, bt)(1 + gd(dt))




f (•, q = 1) = ”∅”

f (•, q = 2) = 0 =

 uc (ct)

0



′ 
 1

0


+ β


 wa,t(at, bt)
wb,t(at, bt)



′ 
 −1 −1

0 1 + gd(dt)




 1

0




m
0 = uc (ct) + βwa,t+1(at, bt)

f (•, q = 3) = 0 =

 uc (ct)

0



′ 
 −1

1


+ β


 wa,t(at, bt)
wb,t(at, bt)



′ 
 −1 −1

0 1 + gd(dt)




 −1

1




m
0 = −uc (ct) + βwb,t(at, bt)(1 + gd(dt))

B.5 Minor Extension: A Collateral Constraint

Our solution method can also handle collateral constraints. Assume that we have the
collateral constraint

at ≥ θbt (B.5)

Choosing ct as the constrained choice, this can be re-written as

at = θbt ↔
mt − ct − dt = θnt + θ(dt + g(dt))↔

ct = mt − θnt − (dt + θ(dt + g(dt)))
= c̆

(
xt,mt, c+

t

)

The first order condition for dt then is

uc (ct)
∂ct
∂dt

+ βwb,t (at, bt) (1 + gd (dt)) = 0 (B.6)

with
∂ct
∂dt

= −(1 + θ(1 + gd(dt)))
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Fixing bt and ct and setting at = θbt, we can find dt from (B.6), and hereafter use the
budget constraints to find mt = at + ct + dt = ct + dt and nt = bt − dt − g(dt).

B.6 Extension with Labor Supply and Human Capital

The new choice-specific value function for the working household is now given by

vt(1,mt, nt, kt) = max
ct,dt,lt

u(ct, 1, lt) + β

ˆ

η

EVt+1(1,mt+1, nt+1, kt+1)G(dη)
︸ ︷︷ ︸

≡wt(at,bt,qt)
s.t.

at = mt + rkktlt − ct − dt
bt = nt + dt + g(dt)
qt = (1− δ)kt + lt

mt+1 = Raat

nt+1 = Rbbt

kt+1 = ηt+1qt

lt ∈ [0, l]
ct ≥ 0
dt ≥ 0

ct + dt ∈ [0,mt + rkktlt]

where qt is the post-decision state associated with end-of-period human capital after
depreciation of existing human capital, but including current labor supply. For simplicity,
we require that the households retire in the terminal period choosing lt = 0.
The problem for the retired households are unchanged, but to strictly bound the marginal
value of human capital from below, we assume that retiring households receive a one time
payment equal to 5 percent of their human capital.
In order to ensure that the optimal choices are not always constrained, we had to change
some of the baseline parameters. We did this to ensure that the speed and accuracy
measures was not an artifact of the parametrization leading to an (uninteresting) special
version of the model. The full set of parameters are given in table B.2.

Table B.2: Baseline Parameter Values.

Ra Rb β ρ α χ y γ ϕ δ rk l σ2
η σε

1.02 1.025 0.98 2.00 0.25 0.10 0.50 1.0 0.6 0.1 0.05 2.00 0.00 0.00
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B.6.1 Segments and FOC for lt

The choice of lt is always above zero (as limlt→0 ul = 0 and uc > 0), and we thus have the
same segments as in the baseline model plus copies of these with lt = l.
In the unconstrained case (ucon), the FOCs related to consumption and pension deposits
are unchanged, and the FOC wrt. labor supply, lt, is given by

lt =
βrk
1−δqtwa,t(at, bt, qt) + βwq,t(at, bt, qt)

βrk
1−δwa,t(at, bt, qt) + ϕ

For the constrained case (con), we have that at = 0↔ ct = mt + rkktlt and dt = 0 such
that the FOC for the unconstrained choice of labor supply, lt, is

lt =
rk

1−δqtc
−ρ
t + βwq,t(at, bt, qt)
rk

1−δc
−ρ
t + ϕ

For the segment where only pension deposits are constrained, dt = 0, (dcon) the optimal
consumption is found as in the baseline model, and lt is found as in the unconstrained
segment above. Finally, for the segment where only end-of-period assets are constrained,
at = 0 (acon), the optimal consumption choice is found as in the baseline model, and lt
is found as in the constrained segment above.

B.6.2 Value Function Derivatives

The derivatives of the value function wrt. mt and nt are unchanged as qt is independent
of mt, nt, ct and dt, and the choice of lt is always either unconstrained or equal to a
constant such that

l?m(mt, nt, kt) = l?n(mt, nt, kt) = l?k(mt, nt, kt) = 0

To determine the derivate of vt(1,mt, nt, kt) wrt. kt note that

vk,t(1,mt, nt, kt) = c?(mt, nt)−ρc?k(mt, nt, kt)
+βwa,t(at, bt, qt)
(rkl?(mt, nt, kt) + rkktl

?
k(mt, nt, kt)− c?k(mt, nt, kt)− d?k(mt, nt, kt))

+βwb,t(at, bt, qt)(1 + g(d?(mt, nt))d?k(mt, nt)
+βwq,t(at, bt, qt)((1− δ) + l?k(mt, nt, kt))

This always reduces to

vk,t(1,mt, nt) = c?(mt, nt)−ρrkl?k(mt, nt, kt) + β(1− δ)wq,t(at, bt, qt) (B.7)
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C Deriving necessary FOCs

This appendix presents methods for proving that FOCs (and Euler equations) are neces-
sary at optimal interior continuous choices even in the presence of discrete choices which
imply that the value function is neither necessarily globally concave nor globally differen-
tiable. The methodology builds upon the theoretical results in Clausen and Strub (2013)
which we begin by recapping in brief. Hereafter we focus on a specific model including
the illustrative model from the main text as a special case.

C.1 Existing lemmas from Clausen and Strub (2013)

Following Clausen and Strub (2013), we define differentiable lower and upper support
functions as follows:

Definition C.1. We say that L : X → R is a differentiable lower support function for
F : X → R at x̂ ∈ int (X) if

∀x ∈ X : L is differentiable (C.1)
L (x) ≤ F (x) (C.2)

x = x̂ : L (x) = F (x) (C.3)

Definition C.2. We say that U : X → R is a differentiable upper support function for
F : X → R at x̂ ∈ int (X) if

∀x ∈ X : U is differentiable (C.4)
U (x) ≥ F (x) (C.5)

x = x̂ : U (x) = F (x) (C.6)

This leads us to the following definition:

Definition C.3. We say that F : X → R is differentiable sandwiched between L and U
if they are respectively differentiable lower and upper support functions.

Clausen and Strub (2013) then prove the following lemma:

Lemma C.1. (Differentiable Sandwich Lemma). If F : X → R is differentiable sand-
wiched between L and U at x̂ for an X ⊆ X with x̂ ∈ int (X ) then F is differentiable at
x̂ with

F ′ (x̂) = L′ (x̂) = U ′ (x̂) (C.7)

They also further prove a a maximum lemma:
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Lemma C.2. (Maximum Lemma). Let φ : X → R be a function. If x̂ ∈ int (X)
maximizes φ then the constant U (x) = φ (x̂) is a differential upper support function for
φ at x̂.

and a so-called reverse calculus lemma:

Lemma C.3. (Reverse Calculus). Suppose F : X → R and G : X → R have differen-
tiable lower support functions at x̂ then

1. If H (x) = F (x) +G (x) is differentiable at x̂, then F is differentiable at x̂.

2. If H (x) = F (x)G (x) is differentiable at x̂ and F (x̂) > 0 and G (x̂) > 0, then
F is differentiable at x̂.

3. If H (x) = max {F (x) , G (x)} is differentiable at x̂ and F (x̂) = H (x̂) then F

is differentiable at x̂.

C.2 New lemma

An almost immediate implication of the reverse calculus lemma C.3 is

Lemma C.4. Suppose H (x) is differentiable at x̂ and

H (x) = max
z∈Z
{J (x, z)} (C.8)

J (x, z) = G (x, z) + β
K∑

k=1
πkF (x, k, z) , β, πk ∈ R (C.9)

where Z is a finite set. If F : X×{1, 2, . . . , K}×Z → R and G : X×Z → R have lower
support functions at x̂ for all k ∈ {1, 2, . . . , K} and all z, then F (x, k, z) is differentiable
at x̂ for all k ∈ {1, 2, . . . , K} when z = z? (x) = argmaxz∈Z J (x, z).

Proof. Defining

J? (x) ≡ J (x, z? (x)) (C.10)
= G (x, z? (x)) + F (x) (C.11)

F (x) ≡ β
K∑

k=1
πkF (x, k, z? (x)) (C.12)

= βF̃ (x) (C.13)

F̃ (x) =
K∑

k=10
πkF (x, k, z? (x)) (C.14)

=
K∑

k=1
F̃k (x) (C.15)

F̃k (x) ≡ πkF (x, k, z? (x)) (C.16)
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and noting that we from the lower support functions for F and G can construct lower
support functions for F̃k, F̃, F , J? and J , we have

1. J? (x) in (C.10) is differentiable at x̂ due to (3) in lemma C.3.

2. F (x) in (C.11) is then differentiable at x̂ due to (1) in lemma C.3.

3. F̃ (x) in (C.13) is then differentiable at x̂ due to (2) in lemma C.3.

4. F̃k (x) in (C.15) is then differentiable at x̂ (for all k) due to (1) in lemma C.3.

5. F (x, k, z? (x)) in (C.16) is then differentiable at x̂ (for all k) due to (2) in lemma
C.3.

C.3 Model

We consider household decision problems on the following form

vt (st,St) = max
zt,at,bt

u (ct) + Et [βvt+1 (st+1,St+1)] (C.17)
s.t.

ct = c (mt, nt, at, bt)
dt = d (nt, bt)

st+1 = Γs (st, zt)
mt+1 = Γm (at, st+1)
nt+1 = Γn (bt, st+1)
zt ∈ Z (st)
at ∈ [0,mt] ⊆ R+

bt ∈
[
nt, b (nt,mt)

]
⊆ R+

ct ∈ [0,mt]
dt ∈ [0,mt]

where St = (mt, nt) and

• Discrete elements: st is a vector of discrete states in the finite set S, zt is
a vector of discrete choices in the finite set Z (st), and Γs : S × Z → S is the
(stochastic) law of motion.

• Liquid resources: mt is pre-decision liquid resources, at is post-decision liq-
uid ressources, and Γm : R+ × S → R+ is the continuous and differentiable
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(stochastic) law of motion. We use the notation

Γ′t,m,a ≡
∂Γm (at, bt, st+1)

∂at

• Illiquid resources: nt is pre-decision illiquid resources, bt is post-decision
illiquid resources, and Γn : R+ × S → R+ is the continuous and differentiable
(stochastic) law of motion. We use the notation

Γ′t,n,b ≡
∂Γn (bt, st+1)

∂bt

• Utility: u : R2 → R is the continuous and twice differentiable utility function
satisfying

u′t,c ≡
∂u (ct)
∂ct

> 0, lim
ct↓0

u′c = ∞

d : R2 → R is the implied continuous and differentiable deposit function where

lim
bt→nt

d (nt, bt) = 0

lim
bt→b(nt,mt)

d (nt, bt) = mt

c : R4 → R is the implied continuous and differentiable consumption function
where

lim
at→mt

c (mt, nt, at, bt) = 0
lim

at→0,dt→0
c (mt, nt, at, bt) = mt

lim
dt→mt

c (mt, nt, at, bt) = 0

c′t,m ≡ ∂c (mt, nt, at, bt)
∂mt

> 0

c′t,n ≡
∂c (mt, nt, at, bt)

∂nt
> 0

c′t,a ≡
∂c (mt, nt, at, bt)

∂at
< 0

c′t,b ≡
∂c (mt, nt, at, bt)

∂bt
< 0

• Choice set: b : R4 → R is a continuous and differentiable function.
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The terminal value function is given by

vT (sT ,ST ) = u (mT ) (C.18)

We denote the optimal discrete choice by z?t = z?t (st,St), and the conditional optimal
continuous choices as a?t = a?t (st,St, z?t ) and b?t = b?t (st,St, z?t ) . We also construct the
optimal consumption function as

c?t = c (mt, nt, a
?
t , b

?
t ) (C.19)

We assume that all the choice functions exist and are unique for ∀st ∈ S, ∀nt ≥ 0 and
mt > 0.

Lemma C.5. The choices of at and bt are never “upward constrained“, i.e.

at < mt

bt < b (nt,mt)
→ ct > 0

Proof. This is a consequence of limct↓0 u
′
c =∞ and ct ↓ 0 as at ↑ mt or bt ↑ b (nt,mt).

C.4 Lazy-schizophrenic households

Definition C.4. We say that a household is lazy-schizophrenic at s̆0 around the initial
continuous state S̆0 = (m̆0, n̆0) with certain implied (stochastic) paths of optimal choices
(z̆k,ăk,b̆k, c̆k, d̆k) and states (s̆k,S̆k) if it in the current and all future periods always, even
if (mt+k, nt+k) 6= S̆k, chooses zt+k = z̆k and (at+k, bt+k) “as close as possible” to

(
ăk, b̆k

)
.

Lemma C.6. If b̆0 > n̆0 a differentiable lazy-schizophrenic value function is

Lt
(
St; s̆0, S̆0

)
= u

(
c
(
mt, nt, ă0, b̆0

))

+β · Et
[
u
(
c
(
m̆1, n̆1, ă1, b̆1

))]

+β2 · Et
[
u
(
c
(
m̆2, n̆2, ă2, b̆2

))]

. . .

where

nt = n̆0 + ∆n

mt = m̆0 + ∆m
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and with

L′t,m = c′t,mu
′
t,c

L′t,n = c′t,nu
′
t,c

Proof. For small enough ∆ ≡ (∆m,∆n), consider the following behavior:

1. Choose at = ă0 and bt = q̆0. This implies:

(a) ct = c
(
m̆0 + ∆m, n̆0 + ∆n, ă0, b̆0

)
, which is feasible as c̆0 > 0.

(b) dt = d
(
m̆0 + ∆n, b̆0

)
, which is feasible as d̆0 > 0 because b̆0 > n̆0.

(c) mt+1 = Γm
(
ă0, b̆1, s̆1

)
= m̆1.

(d) nt+1 = Γn
(
b̆1, s̆1

)
= n̆1.

2. Back on known path.

The differentiability and derivatives can be proven using

L′t,m = lim
∆m→0

L
(
(m̆0 + ∆m, n̆0) ; s̆0, S̆

)

∆m

L′t,n = lim
∆n→0

L
(
(m̆0, n̆0 + ∆n) ; s̆0, S̆0

)

∆n

Lemma C.7. If b̆0 = n̆0 (i.e. d̆0) a differentiable lazy-schizophrenic value function is

Lt
(
St; s0, S̆0

)
= u (c (mt, nt, ă1, bt) , 0)

+βEt







u
(
c
(
mt, nt, ă1, b̆1

))
if b̆1 > n̆1

u (c (mt, nt, ă1, bt) , 0) else




+β2Et








u
(
m̆2, n̆2, ă2, b̆2

)
if It+1 = 0

u
(
c
(
m2, n2, ă2, b̆2

))
if It+1 = 1

u (c (m2, n2, ă2, b2) , 0) if It+1 = 2




+β3Et








u
(
m̆3, n̆3, ă3, b̆3

)
if It+1 = 0

u
(
c
(
m3, n3, ă3, b̆3

))
if It+1 = 1

u (c (m3, n3, ă3, b3) , 0) if It+1 = 2




. . .
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where

k > 1 : It+k =





0 if ∃j < k : b̆j > n̆j

1 if b̆k > n̆k

2 else
mt = m̆0 + ∆m

nt = n̆0 + ∆n

bt = nt

mt+1 = Γm (ă0, bt, s̆1)
nt+1 = Γn (bt)
bt+1 = nt+1

mt+2 = Γm (ă1, bt+1, s̆2)
nt+2 = Γn (bt+1)

. . .

and with

L′t,m = c′t,mu
′
t,c

L′t,n = complex

Proof. For simplicity we assume b̆1 = n̆1 and b̆2 > n̆2, but generalizing the proof is
straightforward. For small enough ∆ ≡ (∆m,∆n), consider the following behavior:

1. Choose at = ă0 and bt = n̆0 + ∆n. This implies:

(a) ct = c (m̆0 + ∆m, n̆0 + ∆n, ă0, n̆0 + ∆n), which is feasible as c̆0 > 0.

(b) dt = 0, which is always feasible.

(c) mt+1 = Γm (ă0, bt, s̆1).

(d) nt+1 = Γn (bt)

2. Choose at+1 = ă1 and bt+1 = nt+1. This implies:

(a) ct+1 = c (mt+1, nt+1 ,ă1, bt), which is feasible as c̆1 > 0.

(b) dt+1 = 0, which is always feasible.

(c) mt+2 = Γm (ă1, bt+1, s̆1).

(d) nt+2 = Γh (bt+1).

3. Choose at+2 = ă2 and bt+1 = b̆2.
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(a) ct+2 = c
(
mt+2, nt+2 ,ă2, b̆2

)
, which is feasible as c̆2 > 0.

(b) dt+2 = d
(
nt+2, b̆2

)
, which is feasible as d̆2 > 0.

(c) mt+3 = Γm
(
ă2, b̆2, s̆2

)
= m̆3.

(d) nt+3 = Γh
(
b̆2
)

= n̆3.

4. Back on known path.

The differentiability and derivatives can be proven using

L′t,m = lim
∆m→0

L
(
(m̆0 + ∆m, n̆0) ; s̆0, S̆

)

∆m

L′t,n = lim
∆n→0

L
(
(m̆0, n̆0 + ∆n) ; s̆0, S̆0

)

∆n

Lemma C.8. The lazy-schizophrenic value function Lt
(
St; st, S̆0

)
is a differentiable lower

support function for vt (st,St) at S̆0.

Proof. The lazy value function L
(
St; st, S̆0

)
is obviously differentiable, and it satisfies the

remaining conditions for being a differentiable lower support function due to

St 6= S̆0 : Lt
(
St; st, S̆0

)
≤ vt (st, St) (C.20)

St = S̆0 : Lt
(
St; st, S̆0

)
= vt (st, St) (C.21)

C.5 Necessary FOCs

Proposition C.1. If a?t > 0 and b?t > nt an optimal choice must satisfy

c′t,au
′
t,c = −βEt

[
Γ′t,m,av′t+1,m

]
(C.22)

c′t,bu
′
t,c = −βEt

[
Γ′t,n,bv′t+1,n

]
(C.23)

Proof. Define the value-of-choice function φ (at, bt;St) conditional on the optimal discrete
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choice as

φ (at, bt;St) ≡ u (ct) + βEt [vt+1 (St+1)] (C.24)
s.t.

ct = c (mt, nt, at, bt)
dt = d (nt, bt)

st+1 = Γs (st, z?t )
mt+1 = Γm (at, bt, st+1)
nt+1 = Γn (bt, st+1)

Due to lemma (C.2) we immediately have a differentiable upper support function at
(at, bt) = (a?t , b?t ). We can construct a differentiable lower support function at (a?t , b?t )
as

φ (at, bt;St) ≡ u (ct) + βEt
[
Lt+1

(
St+1; st+1,S?t+1

)]
(C.25)

s.t.
ct = c (mt, nt, at, bt)
dt = d (nt, bt)

st+1 = Γ (st, z?t )
mt+1 = Γm (at, bt, st+1)
nt+1 = Γn (bt, st+1)

where S?t+1 =
(
m?
t+1, b

?
t+1

)
= (Γm (a?t , b?t , st+1) ,Γn (b?t )).

This is a differentiable lower support function for φ (at, bt; St) at (a?t , b?t ) because the first
terms are the same (and differentiable in at and bt), and because we showed in lemma
(C.8) that the lazy value function Lt+1

(
St+1; st+1,S?t+1

)
is a differentiable lower support

function for vt+1 (St+1) at S?t+1.
Using the differentiable sandwich lemma (C.1) we can now conclude that φ (at, bt;St) is
differentiable in at and bt at (a?t , b?t ), and by using the reverse calculus lemma (C.3) as
in lemma (C.4) we can conclude that vt+1 (St+1), is differentiable in at and bt at (a?t , b?t ).
Equation (C.22) and (C.23) are now the FOCs.

Corollary C.1. If a?t > 0 and b?t = nt then an optimal choice must satisfy

c′t,au
′
t,c = −βEt

[
Γ′t,m,av′t+1,m

]

Proof. Follow from the proof of proposition C.1.
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Corollary C.2. If a?t = 0 and b?t > nt then an optimal choice must satisfy

c′t,bu
′
t,c = −βEt

[
Γ′t,n,bv′t+1,n

]

Proof. Follow from the proof of proposition C.1.

C.6 Euler equations

Corollary C.3. If a?t > 0 and b?t = nt then an optimal choice must satisfy

c′t,au
′
t,c = −βEt

[
Γ′t,m,ac′t+1,mu

′
t+1,c

]
(C.26)

Proof. Continuing from the proof of proposition C.1 we have using lemma C.6 and C.7

0 = φ
′
a (at, bt;St) = φ′

a
(at, bt;St)

= c′t,au
′
t,c + βEtΓ′t,m,a

[
L′t+1,m

]

= c′t,au
′
t,c + βEt

[
Γ′t,m,ac′t+1,mu

′
t+1,c

]

Note that a similar simple Euler equation is not obviously available for the bt-choice due
to the complexity of the derivative L′t+1,n.
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