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1. INTRODUCTION

In cointegrated vector autoregressive models CVAR, or reduced rank VAR models, the
parameters of the cointegration vectors and the adjustment parameters have an im-
portant role. The adjustment coefficients describe the speed of convergence toward the
equilibrium defined by the cointegration vectors, and therefore are essential in specifying
the error correcting properties of these models.

The adjustment coefficients are also crucial for investigating whether some variables
can be classified as exogenous and therefore the possibility of a model reduction. Ex-
ogeneity can be defined in several ways, but the classification weak, strong and super
exogenous introduced by Engle, Hendry and Richard (1983) has been influential. Strong
exogeneity is important for prediction and forecasting and super exogeneity can be given
a causal interpretation postulating invariance with respect to certain policy interventions.
Both strong and super exogeneity presuppose weak exogeneity which means that the joint
distribution factorizes in a particular way. The joint distribution can always be written as
a product of a conditional and a marginal distribution. In the presence of weak exogene-
ity the parameters of the joint distribution can in addition be divided in two parts, one
describing the marginal distribution and another related to the marginal distribution,
without any constraints between the two parts. The parameters of the conditional and
marginal parts are therefore freely varying.

In the CVAR model weak exogeneity is equivalent to one or several rows in the matrix of
adjustment coefficients, α, being zero. Test for this hypothesis has been developed. If the
adjustment parameters corresponding to particular variables vanish, the error correcting
effect of the cointegration vector will not be present for these particular variables.

Expectations are fundamental in economics. For interpretation a crucial question is
how they are defined and implemented. There have been several proposals for how this
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can be done. In the approach introduced by Muth (1961), which is usually called rational
expectations, expectations are essentially the same as predictions of the relevant economic
theory. In the setup of this paper this is summarized in the CVAR and the predictions
are the conditional expectations given the available observations at the time.

Present value models are a place where expectations occur. In an example from Camp-
bell and Shiller (1987) the value of stocks at the beginning of period t, Yt is expressed as a
discounted sum of expected present and future dividends, Yt = δ

∑∞
j=0 δ

jEt[yt+j ], where
yt is the dividend from the period t − 1. Present value models can often be expressed
as a linear combination of observed values and conditional expectations of others. In the
example an implication is the relation St = [δ/(1 − δ)]Et[∆Yt+1] where the spread St
equals Yt − [δ/(1− δ)]yt.

As we can see the variables are not treated symmetrically. In Hansen and Sargent
(1982) it is stressed that in models involving declining expected future forcing variables
these are typically described as being beyond the economic agents control. An investiga-
tion whether they can be considered as exogenous in some sense is therefore natural and
weak exogeneity is the reasonable place to start.

In this paper we will consider how one can test simultaneously for linear rational ex-
pectations relations of the type described and weak exogenity, or more generally that the
error correction parameters satisfy the same restrictions, i.e. α = Aψ where A is a known
matrix and ψ is unknown. Also the case where some of the error correction parameters
are known in addition to the restrictions from the exact rational expectation hypothesis,
will be considered. In both cases we discuss a convenient parameterization by means of
variation of variation free parameters. In the first case this leads to a general procedure
for maximum likelihood estimation and testing. The second case is more complicated
and here we suggest a switching procedure for a particular case.

The paper is a follow up of three related papers dealing with various aspects of the
theme: Johansen and Swensen (1999) where the CVAR contained an unrestricted con-
stant, Johansen and Swensen (2004) where the constant and trend could be restricted
and in particular Johansen and Swensen (2008) where simultaneous tests for restrictions
on the parameters in the cointegration vectors and rational expectations were consid-
ered. We point out that the relations involving the conditional expectations we consider
are exact as defined by Hansen and Sargent (1981) and (1991), i.e. do not contain ad-
ditional stochastic terms. To see the problems occurring for non-exact specifications one
can consult Boug et al. (2010) or Swensen (2014).

The organization of the paper is as follows. In Section 2 the rational expectation
models are explained. In Section 3 we consider the case where the columns of the matrix
of adjustment coefficients belong to a subspace. In Section 4 the case where parts of the
adjustment parameters are known is treated and Section 5 contains an application.

2. THE RESTRICTIONS IMPLIED BY EXACT RATIONAL EXPECTATIONS

This section defines the cointegrated vector autoregressive model as the statistical model
which is assumed to generate the data and formulates the parameter restrictions implied
by the exact rational expectation hypothesis.
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2.1. The cointegrated vector autoregressive model

Let the p-dimensional vectors of observations be generated according to the vector au-
toregressive model

∆Xt = ΠXt−1 +

k∑
i=1

Γi∆Xt−i + µ+ εt, t = 1, . . . , T (2.1)

where X−k+1, . . . , X0 are fixed and ε1, . . . , εT are independent, identically distributed
Gaussian vectors, with mean zero and covariance matrix Ω. We assume that {Xt}t=1,2,...

is I(1) and that Π = αβ′ where the p × r matrices α and β have full column rank r.
This implies that Xt is non-stationary, ∆Xt is stationary, and that β′Xt is stationary.
It is the stationary relations between non-stationary processes and the interpretation as
long-run relations, that has created the interest in this type of model in economics. Also
note that the columns of α and Π = αβ′ span the same space. As in Johansen (1996) we
define the models.

H(r): The model is defined by equation (2.1), where α and β are p×r matrices and other-
wise no further restrictions on the parameters. The number of identified parameters
in the matrix αβ′ is #(αβ′) = pr + r(p− r).

In the following we also assume that α is restricted either by homogeneity restrictions
of the form α = Aψ, (sp(α) ⊂ sp(A)) or that some alpha vectors are known, α = (a, a⊥ψ)
(sp(a) ⊂ sp(α)). This defines two sub-models of H(r).

H1(r): The model is defined by equation (2.1) and the restriction α = Aψ, where A is a
known p × s matrix of rank s, and ψ is an s × r matrix of parameters, r ≤ s ≤ p.
In this case the number of parameters is #(αβ′) = sr + r(p− r).

H2(r): The model is defined by equation (2.1) and the restriction α = (a, a⊥φ) where a
is a known p ×m matrix of rank m > 0, and φ is a (p −m) × (r −m) matrix of
parameters, m ≤ r ≤ p such that αβ′ = aβ′1 + a⊥φβ

′
2. In this model #(αβ′) =

mp+ (r −m)(2p− r).

2.2. Estimation of the cointegrated vector autoregressive models, H(r), H1(r), and
H2(r)

It is well known, see Johansen (1996), that the Gaussian maximum likelihood estimator
of β is calculated by reduced rank regression, as in Anderson (1951), of ∆Xt on Xt−1

corrected for the stationary regressors

∆Xt−1, . . . ,∆Xt−k+1.

Once β is determined, the other parameters are estimated by regression.
Model H1(r) is estimated using the likelihood function obtained by defining two re-

gression equations and using a conditionality argument. In the following we will use the
usual notation that if a is an n×m, 0 < m < n matrix of full rank, then ā = a(a′a)−1

and satisfies a′ā = Im, and a⊥ is an n× (n−m) matrix such that a′⊥a = 0 and the n×n
matrix (a, a⊥) is nonsingular, finally In = āa′ + ā⊥a

′
⊥.

The model H2(r) is estimated by first finding the parameter β1 from the conditional
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equation for ā′∆Xt given ā′⊥∆Xt and the past and then finding the parameters φ and
β2 by reduced rank regression in the marginal model for ā′⊥∆Xt.

2.3. The model for exact rational expectations and some examples

The model formulates a set of restrictions on the conditional expectation of Xt+1 given
the information Ot in the variables up to time t, which we write in the form

RE : The model based exact rational expectations formulates relations for conditional
expectations

E[c′∆Xt+1|Ot] = τd′Xt +
∑̀
i=1

τid
′
i∆Xt+1−i + dµ. (2.2)

Here Et = E[·|Ot] denotes the conditional expectation in the probabilistic sense of
model (2.1), given the variables X1, . . . , Xt. The matrices c of dimensions p× q, d
of dimensions p × n and di of dimensions p × ni, i = 1, . . . , ` are known full rank
matrices and τ(q × n), τi(q × ni), i = 1, . . . , ` are parameters. The elements of the
q × 1 vector dµ are either known or parameters. We assume that n ≤ q and ` ≤ k.

We give next two examples of a rational expectations model and discuss the relation
to models H1(r) and H2(r).

Example 2.1. The variables real consumption, CPt, real labour income, Y Lt, and real
capital income Y Kt, are fundamental in models for aggregate consumption, both for those
in the Keynesian tradition and for versions building on a permanent income hypothesis.
Campbell (1987) studied a permanent income hypothesis for consumption of the form:

CPt = γ(Y Kt +
r

1 + r

∞∑
i=0

(
r

1 + r
)iEt[Y Lt+i])

where r is the expected real interest rate and γ ≤ 1 is a proportionality factor. Current
consumption is therefore a fraction of present and estimated future labour income and
present capital income.
Savings is defined as St = (Y Lt + Y Kt)− CPt/γ. Campbell showed that

St −∆Y Lt − (1 + r)St−1 = −ret (2.3)

where

et =
1

1 + r

∞∑
i=0

(
1

1 + r
)i(Et[Y Lt+i]− Et−1[Y Lt+i]).

Then et is a martingale difference, such that Et[et+1] = 0. Using iterated expectations,
(2.3) therefore implies

Et[St+1 −∆Y Lt+1]− (1 + r)St = 0. (2.4)

Expressed by the variables Xt = (CPt, Y Lt, Y Kt)
′, (2.4) can be written

Et[∆Y Kt+1 −∆CPt+1/γ] = − r
γ
CPt + r(Y Lt + Y Kt).
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When the proportionality factor γ is known, this has the form (2.2) with c = (−1/γ, 0, 1)′,
d = (−1/γ, 1, 1)′ and τ = r a parameter to be estimated.
An alternative to the permanent income hypothesis is that consumption is determined
by current income as suggested by Keynes. This can be modeled using a VAR model for
(CPt, Yt,Wt)

′ of type H1(r) with α = (1, 0, 0)′ if the reduced rank is 1.

Example 2.2. In Boug et al. (2017) the following model for inflation dynamics was
studied

∆pt = γfEt[∆pt+1]− λ(pt − δ1ulct − δ2uict) + γb∆pt−1 + δ0

where ulct, uict denote unit labour cost and unit import cost, and pt is the consumer price
index, all in logarithms. Define Xt = (ulct, uict, pt)

′, c = (0, 0, 1)′ and d = (−δ1,−δ2, 1)′.
Dividing by γf one gets

Et[∆pt+1] = (λ/γf )(pt − δ1ulct − δ2uict) + (1/γf )∆pt − (γb/γf )∆pt−1 − δ0/γf
which can be expressed as

c′Et[∆Xt+1] = τd′Xt + τ1d
′
1∆Xt + τ2d

′
2∆Xt−1 + µ. (2.5)

This is of the form (2.2) with ` = 2 and d1 = d2 = e3.

2.4. Combining the exact rational expectations and the vector autoregressive models

In this section we combine the exact rational expectations and the vector autoregres-
sive models, H1(r) and H2(r) and express the exact rational expectations model (2.2)
as restrictions on the coefficients of the statistical model (2.1). Taking the conditional
expectation of c′∆Xt+1 given X1, . . . , Xt, we get by using (2.1),

c′Et[∆Xt+1] = c′αβ′Xt +

k∑
i=1

c′Γi∆Xt+1−i + c′µ.

Equating this expression to (2.2) implies that the following conditions must be satisfied

c′αβ′ = τd′, c′Γi = τid
′
i, i = 1, . . . , `, c′Γi = 0, i = `+ 1, . . . , k, c′µ = dµ.

This can be summarized as:

Proposition 2.1. The exact rational expectations restrictions (2.2) imply that the ma-
trix αβ′ is restricted as

c′αβ′ = τd′, (2.6)

and the remaining parameters are restricted as

c′Γi = τid
′
i, i = 1, . . . , `, c′Γi = 0, i = `+ 1, . . . , k, c′µ = dµ. (2.7)

Note that (2.6) implies that τd′β⊥ = 0, so that when n ≤ q we find τ̄ ′τd′β⊥ = d′β⊥ = 0,
and hence sp(d) ⊂ sp(β) and therefore n ≤ r.

Consider the following two specifications of restriction (2.6) on α

c′Aψβ′ = τd′ (2.8)

and

c′(a, a⊥φ)β′ = τd′. (2.9)
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We define two sub-models ofH1(r) andH2(r) respectively which satisfy the restrictions
in RE .

H†1(r): The model is a submodel of H1(r) which satisfies the restrictions (2.8) and (2.7),
H†2(r): The model is a submodel of H2(r) which satisfies the restrictions (2.9) and (2.7).

When estimating models H†1(r) and H†2(r) it is convenient to use a parametrization of
freely varying parameters. Such a parametrization is given for the first model in Section
3 together with an analysis of the estimation problem. In Section 4 we discuss the model
H†2(r)

3. THE SAME RESTRICTIONS ON ALL α, H†1(R)

We first give a representation in terms of freely varying parameters of the matrix αβ′,
when restricted by α = Aψ and c′αβ′ = τd′, see (2.8). In this case the relation between
sp(c) and sp(A) must be taken into account.

3.1. A reparameterization of H†1(r)

Following Johansen and Swensen (2008) it is convenient to define the s× o matrix u and
(p − q) × o matrix v such that A′c̄⊥ = uv′ where o is equal to the rank of A′c̄⊥. The
space Rp has the orthogonal decomposition (c, c̄⊥v̄, c⊥v⊥). Also

A = cc̄′A+ c⊥c̄
′
⊥A = cc̄′A+ c⊥vu

′

so sp(c, A) = sp(c, c⊥v), and c⊥v⊥ spans the orthogonal complement of sp(c, A). In
particular it follows that if c ∈ sp(A), sp(A) = sp(c, A) = sp(c, c⊥v) such that

c⊥v ∈ sp(A) and o = s− q (3.1)

since A and c have rank s and q respectively.

Proposition 3.1. Consider the matrix Π = αβ′ of rank r of the model defined in equa-
tion (1). Let c and d be known matrices of full rank and dimensions p × q and p × n
respectively where n ≤ q. Let A be a known p× s matrix such that rank(A′c̄⊥) = o ≤ s,
and A′c̄⊥ = uv′ for matrix u of rank o and dimension s× o and matrix v of rank o and
of dimension (p− q)× o.

Consider two sets of restrictions on the parameters of the matrix Π.
The first is formulated as

α = Aψ, c′αβ′ = τd′ and rank(αβ′) = r, (3.2)

see (2.8).
The second set of restrictions is formulated as

αβ′ = c̄τd′ + c⊥vθd
′ + c⊥vκζ

′d′⊥, (3.3)

where it is assumed that rank(A′c̄⊥) = o ≥ r − n and that there exist matrices κ and ζ
of full rank and dimensions o× (r− n) and (p− n)× (r− n)respectively, and where θ is
o× n.

It holds that (3.2) implies (3.3), and if further c ∈ sp(A) then (3.3) implies (3.2).
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We summarize the dimensions of the matrices introduced in the table

Table 1. Summary of the coefficient and parameter matrices and their dimensions, as
used in the formulation of the model and its reparametrization in Proposition 3.1

Model Reparametrization
Coefficients Ap×s cp×q dp×n us×0 v(p−q)×o

Parameters ψs×r βp×r τq×n κo×(r−n) θo×n ζ(p−n)×(r−n) νs×(p−n)

Remark 3.1. Note that the p×n matrix d contains the known cointegration relations,
so r−n is the number of freely varying cointegration relations. Similarly s is the dimension
of the range of α, so s − r is a measure of the indeterminacy of the adjustment vectors
α.

Remark 3.2. From Proposition 3.1 one gets conditions where a reparameterization
using τ, κ, θ and ζ is possible instead of α = Aψ and β restricted as described in equation
(3.2). To be more specific: in equation (3.3) αβ′ is expressed by the parameters τ, θ and
κζ ′. Conversely, to express τ , θ and κζ ′ by α = Aψ and β, note that from equation (3.4)
below (

c′

c̄′⊥

)
Aψβ′(d̄, d̄⊥) =

(
τ 0
vθ vκζ ′

)
.

Hence τ = c′Aψβ′d̄ and θ = (v′v)−1v′c̄′⊥Aψβ
′d̄ = u′ψβ′d̄. Also vκζ ′ = c̄′⊥Aψβ

′d̄⊥ =
vu′ψβ′d̄⊥ such that κζ ′ = u′ψβ′d̄⊥ after multiplication with v̄′.

Remark 3.3. The number of parameters in the matrix Π restricted as in Model H†1(r) :
Π = Aψβ′ and by (2.8): c′Π = c′Aψβ′ = τd′, can be found from the representation (3.3)
in Proposition 2. The number is given by

#τq×n + #θo×n + #κo×(r−n)ζ
′
(r−n)×(p−n) = qn+ on+ (r − n)(p− r + o),

which for c ∈ sp(A), where o = s− q, reduces to sr + (r − n)(p− r − q).

Proof of proposition 3.1. Proof that (3.2) implies (3.3). Pre-multiplying αβ′ =
Aψβ′ by (c, c̄⊥)′ and post-multiplying by (d̄, d̄⊥) we find using c′αβ′ = τd′ that(

c′

c̄′⊥

)
αβ′(d̄, d̄⊥) =

(
τd′d̄ τd′d̄⊥
c̄′⊥αβ

′d̄ c̄′⊥αβ
′d̄⊥

)
=

(
τ 0

c̄′⊥αβ
′d̄ c̄′⊥αβ

′d̄⊥

)
.

Next use c̄′⊥A = vu′ to simplify the entries c̄′⊥αβ
′d̄ and c̄′⊥αβ

′d̄⊥. First c̄′⊥αβ
′d̄ =

c̄′⊥Aψβ
′d̄ = vu′ψβ′d̄ = vθ for θ = u′ψβ′d̄. Furthermore, let ν = ψβ′d̄⊥ such that

c̄′⊥αβ
′d̄⊥ = c̄′⊥Aψβ

′d̄⊥ = vu′ν.

Then (
c′

c̄′⊥

)
Aψβ′(d̄, d̄⊥) =

(
τ 0
vθ vu′ν

)
. (3.4)

Since the matrix αβ′ has rank r and τ has rank n, the matrix vu′ν must have rank
r − n ≥ 0. Also r − n = rank(vu′ν) ≤ rank(vu′) = rank(c̄′⊥A) = o.
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We apply Sylvester’s inequality, see Horn and Johnson (2013) p.13, to the (p− q)× o
matrix v and the o× (p− n) matrix u′ν and find

rank(v) + rank(u′ν)− o ≤ rank(vu′ν) ≤ min(rank(v), rank(u′ν)).

Because rank(v) = o, this shows that rank(u′ν) ≤ rank(vu′ν). The reverse inequality is
obvious so we find rank(u′ν) = rank(vu′ν) = r − n.

Then, since o ≥ r−n there exists matrices κ and ζ of full rank and dimensions o×(r−n)
and (p− n)× (r − n) respectively such that that u′ν = κζ ′ and

Aψβ′ = (c̄, c⊥)

(
τ 0
vθ vκζ ′

)(
d′

d′⊥

)
= c̄τd′ + c⊥vθd

′ + c⊥vκζ
′d′⊥.

Proof that (3.3) implies (3.2). Sylvester’s inequality applied to the (p− q)× o matrix
v and the o× (r − n) matrix κ gives

rank(v) + rank(κ)− o ≤ rank(vκ) ≤ min(rank(v), rank(κ)).

or

o+ (r − n)− o ≤ rank(vκ) ≤ min(o, r − n) = r − n.
such that the equality holds and rank(vκ) = r − n. The last inequality follows from the
assumption that r − n ≤ o.

The relation(
c′

c̄′⊥

)
αβ′(d̄, d̄⊥) =

(
c′

c̄′⊥

)
(c̄τd′ + c⊥vθd

′ + c⊥vκζ
′d′⊥)(d̄, d̄⊥) =

(
τ 0
vθ vκζ ′

)
shows that αβ′ has rank r because τ has rank n and vκζ ′ has rank r − n. This follows
from an application of Sylvester’s inequality since rank(vκ) = r − n and

rank(vκ) + rank(ζ ′)− (r − n) = (r − n) + (r − n)− (r − n) ≤ rank(vκζ ′) ≤ (r − n).

Premultiplying the expression in (3.3) by c′ and A′⊥, implies that

c′αβ′ = c′c̄τd′ = τd′,

A′⊥αβ
′ = A′⊥(c̄τd′ + c⊥vθd

′ + c⊥vκζ
′d′⊥).

But the assumption c ∈ sp(A) implies A′⊥c̄τd
′ = 0. The assumption also implies c⊥v ∈

sp(A), see (3.1), such that A′⊥c⊥v = 0 and A′⊥αβ
′ = 0. Therefore the space spanned by

the columns of αβ′ is contained in sp(A), i.e. α = Aψ. �

3.2. Estimating model H†1(r)

Notice that when c ∈ sp(A⊥) there is no model satisfying the constraints (3.2) except
for the uninteresting case d = 0. We therefore only consider the case where c has a
component in sp(A). If

εt(ψ, β,Γ1, . . . ,Γk, µ) = ∆Xt −Aψβ′Xt−1 −
k∑
i=1

Γi∆Xt−i − µ, t = 1, . . . , T

the maximum likelihood estimates are found by maximizing

−T
2

log(Ω)− 1

2

T∑
t=1

εt(ψ, β,Γ1, . . . ,Γk, µ)′Ω−1εt(ψ, β,Γ1, . . . ,Γk, µ)
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with respect to ψ, β,Γ1, . . . ,Γk, µ,Ω, τ, τ1, . . . , τ` under the constraints (2.7) and (2.8), in
particular c′Aψβ′ = τd′. A consequence of the following lemma is that it is not necessary
to take into account the part of c that is not in sp(A) because the condition ˜̃c′Aψβ′ = 0
is always satisfied. Here ˜̃c′A is the projection of c on sp(A⊥). Thus it suffices to find the
maximum likelihood estimates for c ∈ sp(A).

Lemma 3.1. Let c̃ = ĀA′c and ˜̃c = Ā⊥A
′
⊥. Then

c′Aψβ′ = τd′ (3.5)

is equivalent to

c̃′Aψβ′ = τd′ and ˜̃c′Aψβ′ = 0. (3.6)

Proof of Lemma 3.1. Proof that (3.5) implies (3.6). Assume (3.5). Then c̃′Aψβ′ =
c′ĀA′Aψβ′ = c′Aψβ′ = τd′ and ˜̃c′Aψβ′ = c′Ā⊥A

′
⊥Aψβ

′ = 0
Proof that (3.6) implies (3.5). Adding the terms, τd′ = (c̃′ + ˜̃c′)Aψβ′ = c̃′Aψβ′ =
c′AĀ′Aψβ′ = c′Aψβ′. �

Remark 3.4. If Xt = (X ′1t, X
′
2t)
′ and A = (I, 0)′, X2t is weakly exogenous for the

parameters (β, ψ), Johansen (1996). Then c ∈ sp(A) means that the elements in the
lower rows of c are equal to 0. Generally, let c = (c′1, c

′
2)′ where c1 and c2 are s× q and

(p − s) × q matrices respectively. Then c′A = (c′1, c
′
2)A = c′1 such that the restriction

c′Aψβ′ = τd′ does not involve c2, which represents the part of c not in sp(A). Thus, in
economic modelling, only c1, which determines the non-null rows in Π = Aψβ′, and the
restrictions c′Γi = τid

′
i, i = 1, . . . , `, c′Γi = 0, i = `+ 1, . . . , k. must be specified.

We will now show how estimation of H†1(r) defined in Subsection 2.4 can be performed
by reduced rank regression and regression under the assumption that c ∈ sp(A). Then
o = s− q, see (3.1). Two cases need to be distinguished.

First consider the case where o < r−n. The restricted model can then be estimated by
premultiplying model (2.1) with (c, c̄⊥)′ and incorporating the restrictions. Then one can
reparameterize by conditioning c̄′⊥∆Xt on c′∆Xt and the past. The conditional equation
can be estimated by a combination of reduced rank and ordinary least squares (OLS)
regressions, and the parameters in marginal equation for c′∆Xt can be estimated by OLS
regressions. Details can be found in Appendix A.

Next consider the case where o ≥ r − n. Then a more elaborate argument is needed.
The matrix αβ′ can according to Proposition 2 be reparameterized as

αβ′ = c̄τd′ + c⊥vθd
′ + c⊥vκζ

′d′⊥, (3.7)

and c′Γi, i = 1 . . . , k are restricted as

c′Γi = τid
′
i, i = 1, . . . , `, c′Γi = 0, i = `+ 1, . . . , k. (3.8)

Remark that rank(τd′) = n and rank(v(θd′+κζ ′d′⊥)) = o. Hence, since the matrix (3.7)
has rank r, o+ n ≥ r, i.e. rank(A′c̄⊥) ≥ r − n.

We first define the three processes X∗1t, X
∗
2t, X

∗
3t, by

X∗t =

 X∗1t
X∗2t
X∗3t

 =

 v̄′c̄′⊥Xt

v′⊥c̄
′
⊥Xt

c′Xt

 = GXt, (3.9)
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of dimensions (s−q, p−s, q) respectively. Define α∗,Γ∗i , i = 1, . . . , k, µ∗ and ε∗t similarly,
i.e. α∗ = (α∗′1 , α

∗′
2 , α

∗′
3 )′ = Gα,Γ∗i = (Γ∗′1i,Γ

∗′
2i,Γ

∗′
3i)
′ = GΓi, µ

∗ = Gµ and ε∗t = Gεt. Let
Σ = GΩG′. The equations then become

∆X∗t = α∗β′Xt−1 +

k∑
i=1

Γ∗i∆X
∗
t−i + µ∗ + ε∗t . (3.10)

We next want the conditional equations and define ε∗∗t = Kε∗t where

K =

 Is−q −ω12.3 −ω13.2

0 Ip−s −ω2.3

0 0 Iq

 (3.11)

with ω12.3 = Σ12.3Σ−1
22.3, ω13.2 = Σ13.2Σ−1

33.2 and ω2.3 = Σ23Σ−1
33 . Then ε∗∗1t , ε

∗∗
2t , ε

∗
3t are

independent, and we find the equation for ∆X∗1t given (∆X∗2t,∆X
∗
3t), the equation for

∆X∗2t given ∆X∗3t and the equation for ∆X∗3t by pre-multiplying the right hand side of
equation (3.10) by the matrix K. Thus

∆X∗t =

 ω12.3 ω13.2 α∗∗1 β′ Γ∗∗11 . . . Γ∗∗1k µ∗∗1
0 ω2.3 α∗∗2 β′ Γ∗∗21 . . . Γ∗∗2k µ∗∗2
0 0 α∗3β

′ Γ∗31 . . . Γ∗3k µ∗3

Z∗t +

 ε∗∗1t
ε∗∗2t
ε∗3t

 ,

Z∗′t =
(
∆X∗′2t,∆X

∗′
3t, X

′
t−1,∆X

∗′
t−1, . . . ,∆X

∗′
t−k, 1

)
,

where α∗∗1 = α∗1 − ω12.3α
∗
2 − ω13.2α

∗
3, α∗∗2 = α∗2 − ω2.3α

∗
3 with similar expressions for

Γ∗∗mi, µ
∗∗
m , ε

∗∗
m ,m = 1, 2, E(ε∗∗1t ε

∗∗′
1t ) = Σ11.23, E(ε∗∗2t ε

∗∗′
2t ) = Σ22.3 and E(ε∗∗3t ε

∗∗′
3t ) = Σ33.

We now introduce the restrictions. Under (3.7), αβ′ = c̄τd′+c⊥v(θd′+κζ ′d′⊥), we find v̄′c̄′⊥
v′⊥c̄
′
⊥

c′

αβ′ =

 v̄′c̄′⊥
v′⊥c̄
′
⊥

c′

 [(c̄τ + c⊥vθ)d
′ + c⊥vκζ

′d′⊥]

=

 θ
0
τ

 d′ +

 κζ ′

0
0

 d′⊥.

After pre-multiplication by the matrix K defined in (3.11) we have α∗∗1
α∗∗2
α∗3

β′ =

 θ − ω13.2τ
−ω2.3τ
τ

 d′ +

 κζ ′

0
0

 d′⊥.

With the definitions Γ∗∗∗j1 = (Γ∗∗j1 . . .Γ
∗∗
j,`), j = 1, 2, Γ∗∗∗31 = (Γ∗31 . . .Γ

∗
3,`) = (τ1d

′
1, . . . , τ`d

′
`)

and Γ∗∗∗j2 = (Γ∗∗j,`+1 . . .Γ
∗∗
j,k), j = 1, 2 the conditional equations may be written

∆X∗t =

 ω12.3 ω13.2 θ − ω13.2τ κζ ′ Γ∗∗∗11 Γ∗∗∗12 µ∗∗1
0 ω2.3 −ω2.3τ 0 Γ∗∗∗21 Γ∗∗∗22 µ∗∗2
0 0 τ 0 Γ∗∗∗31 0 µ∗3

Z∗∗t +

 ε∗∗1t
ε∗∗2t
ε∗3t

 ,

where

Z∗∗′t =
(
∆X∗′2t,∆X

∗′
3t, X

′
t−1d,X

′
t−1d⊥,∆X

∗′
t−1, . . . ,∆X

∗′
t−k, 1

)
.

The parameters in the equation for ∆X∗1t using θ∗ = θ−ω13.2τ, are variation independent
of the parameters in the equations for ∆X∗2t and ∆X∗3t. The coefficient ω2.3τ, however,
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represents a cross equation restriction as a product of ω2.3 from the equation for ∆X∗2t,
and τ from the equation for ∆X∗3t. In the analysis below we therefore first assume τ
is known and introduce the variable ∆X∗3t − τd′Xt−1, then estimate by reduced rank
regression and finally optimize over τ .

We summarize the estimation procedure when rank(A′c̄⊥) ≥ r − n as

Proposition 3.2. Estimation of the model H†1(r) when rank(A′c̄⊥) ≥ r − n can be
conducted in three steps when τ is known:

1 By reduced rank regression of ∆X∗1t on d′⊥Xt−1 corrected for the remaining regres-

sors in Z∗∗t by OLS, find estimates ω̂12.3, ω̂13.2, θ̂∗, κ̂, ζ̂, Γ̂∗∗11,. . . , Γ̂∗∗1k, µ̂∗∗1 , and

Σ̂11.23.
2 For fixed value of τ impose the restrictions c′Γi = Γ∗3i = τid

′
i, i = 1, . . . , `, c′Γi =

Γ∗3i = 0, i = `+ 1, . . . , k, see (3.8), introduce the variable ∆X∗3t− τd′Xt−1 and find
the system(

∆X∗2t
∆X∗3t − τd′Xt−1

)
=

(
ω2.3 Γ∗∗∗21 Γ∗∗∗22 µ∗∗2

0 τ1d
′
1 . . . τ`d

′
` 0 µ∗3

)
Z∗∗∗t +

(
ε∗∗2t
ε∗3t

)
,

Z∗∗∗′t =
(
(∆X∗3t − τd′Xt−1)′,∆X∗′t−1, . . . ,∆X

∗′
t−k, 1

)
.

This system can be estimated by OLS regression. From the equation for ∆X∗2t a
regression gives estimates ω̂2·3, Γ̂∗∗2i , i = 1, . . . , k, µ̂∗2, Σ̂22.3. From the equation for

∆X∗3t − τd′Xt−1, an regression gives the estimates τ̂i, i = 1, . . . , `, µ̂3, Σ̂33 all
depending on τ .

3 Finally, the maximal value of the likelihood equals, apart from constants,

L−2/T
max (τ) = |Σ̂11.23||Σ̂22.3||Σ̂33|/|c′c||v̄′c̄′⊥c̄⊥v̄||v′⊥c̄′⊥c̄⊥v⊥|.

We can therefore calculate the maximized likelihood for the three equations for a given
τ, and maximize it respect to τ, by a general maximization algorithm if τ is not known.

Remark 3.5. The case r − n = 0 needs a special comment. In this case the last term
in equation (3.7) disappears which has the implication that the reduced rank regression
of ∆X∗1t on d⊥Xt−1 is not necessary in step 1 in Proposition 3.2, and OLS regression is
sufficient. For the case where A = I and n = q see Johansen and Swensen (1999) where
the procedure is written out in detail.

Remark 3.6. Another possibility for estimating the equations for ∆X∗2t,∆X
∗
3t when τ

is unknown is to notice that the model

∆X∗2t =

k∑
i=1

Γ∗2i∆X
∗
t−i + µ∗2 + ε∗2t, (3.12)

∆X∗3t = τd′Xt−1 +
∑̀
i=1

Γ∗3i∆X
∗
t−i + µ∗3 + ε∗3t.

with the restriction (3.8) is linear in the conditional mean and hence can be estimated
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by generalized least squares for fixed variance matrix. For fixed linear parameters the
variance can be estimated from the residuals, such that an iteration procedure can be
defined. This is an example of a coordinate search method, see e.g Nocedal and Wright
(2006). The model is a special case of seemingly unrelated regressions, SUR. In Oberhofer
and Kmenta (1974) it is shown that for such models the sequence has a limit point
which is a solution of the likelihood equations. In general, for iterative methods for
maximization there is no guarantee that they will converge toward the global maximum
if there are several local maxima. Drton and Richardson (2004) contains a discussion of
multi modularity of the likelihood in bivariate SUR models.
Let the residual from this fit be R23,t and let S23 = 1

T

∑T
t=1R23,tR

′
23,t. Then the maximal

value of the likelihood, apart from constants, can be expressed as

L−2/T
max = |Σ̂11.23||S23|/|c′c||v̄′c̄′⊥c̄⊥v̄||v′⊥c̄′⊥c̄⊥v⊥|.

Remark 3.7. For the case where all elements in the matrix dµ are known, a small
modification is necessary in the equation for the variable ∆X∗3,t. Instead of regressing
∆X∗3,t − τd′Xt−1 on d′1∆X∗t−1, . . . , d

′
`∆X

∗
t−` and 1, regress ∆X∗3,t − τd′Xt−1 − dµ on

d′1∆X∗t−1, . . . , d
′
`∆X

∗
t−` only. In particular, if dµ = 0 the response is ∆X∗3,t − τd′Xt−1

and the regressor 1 is dropped.

Remark 3.8. There is an interesting modification of the estimation procedure described
above. If the coefficient −ω2.3τ of d′Xt−1 in the equation for ∆X2t in (B.1) is replaced
by a freely varying parameter the new system will contain (p− s)q extra parameters. It
will, however, have a structure so that the expanded parameter set can be estimated by
ordinary least squares.

4. SOME α ASSUMED KNOWN, H†2(R)

We consider the situation where the freely varying parameters of the matrix αβ′ are
restricted by α = (a, a⊥φ) such that c′αβ′ = c′(aβ′1 + a⊥φβ

′
2) = τd′ where a is a

known p×m matrix of full rank, see (2.9). We start with two special cases, A: c′a = 0,
0 < m ≤ r − n and β1 known and B: 0 < m = r. Thereafter we consider how the more
general model where also β1 is unknown can be estimated.

4.1. Estimating some special cases of the model H†2(r)

A: when c′a = 0, 0 < m ≤ r − n and β1 known it is possible to apply Proposition 3.1.
The constraints on the matrix Π are now

c′Π = c′αβ′ = c′(aβ′1 + a⊥φβ
′
2) = τd′ or c′αβ′ = c′a⊥φβ

′
2 = τd′

such that the model can be written

∆Xt − aβ′1Xt−1 = a⊥φβ
′
2Xt−1 +

k∑
i=1

Γi∆Xt−i + µ+ εt (4.1)

with constraints c′a⊥φβ
′
2 = τd′ and (2.7).

These are analogous to the restrictions (2.8) and (2.7) with rank(a⊥φβ
′
2) = r1 equal

to r −m and the known p× (p−m) matrix a⊥ corresponding to A. In addition c′a = 0
is equivalent to c ∈ sp(a⊥) which implies that the number of columns of a⊥ minus the
number of constraints equals the rank of a′⊥c, i.e. p−m−q = rank(a′⊥c̄⊥), see (3.1). Also,
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we deal only with the situations where 0 < m ≤ r − n. The case where r −m = n, i.e.
m = r−n is special as noted in Remark 3.5. In particular since d ⊂ sp(β2), as explained
after Proposition 2.1, and rank sp(β2) = r −m = n = rank(d), sp(d) = sp(β2) so β2 is
known up to a normalization in this case.

But there are also two distinct cases, as in section 3, depending on the value of
rank(a′⊥c̄⊥). If rank(a′⊥c̄⊥) < r1−n = r−m−n, the argument based upon the conditional
equation of c̄′⊥∆Xt given c′∆Xt and the past must be applied. If rank(a′⊥c̄⊥) ≥ r1 − n,
the conditions of Proposition 3.1 are satisfied, and the parameters can be estimated as
described in Proposition 3.2. This can be done either by first keeping τ fixed and then
using a general optimizing algorithm to find the maximizing value of τ or using the SUR
procedure described in Remark 3.6.

B: when 0 < m = r, α = a all adjustment parameters are known. After premultiplying
the model (2.1) with (c, c̄⊥)′ and incorporating the restrictions the parameters of the
coefficient of the level does not have a multiplicative structure. The reason is that the
parameters in β are the only unknowns. A direct application of Proposition 3.2 is therefore
not possible, and a small modification of the arguments used there is necessary. The
details can be found in Appedix B.

4.2. Estimating the model H†2(r) when c′a = 0 and 0 < m ≤ r − n

Now, consider the situation where c′(aβ′1 + a⊥φβ
′
2) = τd′ and c′a = 0. Then the model

with the restrictions imposed can be written

c̄′⊥∆Xt = c̄′⊥aβ
′
1Xt−1 + c̄′⊥a⊥φβ

′
2Xt−1 +

k∑
i=1

c̄′⊥Γi∆Xt−i + c̄′⊥µ+ c̄′⊥εt,

c′∆Xt = τd′Xt−1 +
∑̀
i=1

τid
′
i∆Xt−i + c′µ+ c′εt.

The model is unidentified if rank(c̄′⊥a) < m and rank(c̄′⊥a) > m is not possible since
the matrix a has rank m. Hence rank(c̄′⊥a) = m if we assume that the model is identified.

We propose the following iterative procedure for estimating the parameters. Assume
first that τ is fixed and consider the situation where rank(a′⊥c̄⊥) ≥ r1 − n.

Step 1. Keep φ and β2 fixed. Writing the model

c̄′⊥(∆Xt − a⊥φβ′2Xt−1) = c̄′⊥aβ
′
1Xt−1 +

k∑
i=1

c̄′⊥Γi∆Xt−i + c̄′⊥µ+ c̄′⊥εt, (4.2)

c′∆Xt − τd′Xt−1 =
∑̀
i=1

τid
′
i∆Xt−i + c′µ+ c′εt

estimate the parameters β1, c̄′⊥Γi, i = 1, . . . , k, µ, τ1, . . . , τ` and Σ as described in
B in the previous subsection.

Step 2. Keep β1 fixed. Remembering that rank(a⊥φβ
′
2) = r1 = r −m and c′a = 0
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write the model

c̄′⊥(∆Xt − aβ′1Xt−1) = c̄′⊥a⊥φβ
′
2Xt−1 +

k∑
i=1

c̄′⊥Γi∆Xt−i + c̄′⊥µ+ c̄′⊥εt, (4.3)

c′∆Xt − τd′Xt−1 =
∑̀
i=1

τid
′
i∆Xt−i + c′µ+ c′εt.

Estimate the parameters φ, β2 (when they are unknown, i.e. r−n > m), c̄′⊥Γi, i =
1, . . . , k, µ, τ1, . . . , τ` and Σ as described in A of the previous subsection.

Step 3. Repeat calculations N times.

The value of the likelihood increases for each iteration even though convergence toward
a global maximum, or even convergence cannot be guaranteed. Also convergence, when it
occurs, can be slow. But such coordinate search methods can still be useful, see Nocedal
and Wright (2006), page 230.

If β̂1, φ̂, β̂2,̂̄c′⊥Γi, i = 1, . . . , k, µ̂, τ̂1, . . . , τ̂` and Σ̂ are the maximum likelihood estimates
when τ is fixed and

Rt =

(
c̄′⊥∆Xt − c̄′⊥aβ̂1Xt−1 − c̄′⊥a⊥φ̂β̂′2Xt−1 −

∑k
i=1

̂̄c′⊥Γi∆Xt−i − c̄′⊥µ̂
c′∆Xt − τd′Xt−1 −

∑`
i=1 τ̂id

′
i∆Xt−i − c′µ̂

)
, t = 1 . . . , T

are the residuals, the maximal value of the likelihood is

L−2/T
max (τ) = |

T∑
t=1

RtR
′
t|/|c′c ||c̄′⊥c̄⊥|.

For unknown τ we can find the maximum likelihood estimators using a general numerical
optimization procedure. Another possibility is to insert a SUR step to estimate an un-
known τ in the conditional distributions described in A and B in the previous subsection.

The other situation, where rank(a′⊥c̄⊥) < r1 − n, is simpler. Then it is not needed
to keep τ fixed in both steps. One can proceed as follows. In step 1 τ is kept fixed in
addition to φ and β2. The model (4.2) can be reparameterized by conditiong on the
marginal equation. The other parameters can then be estimated by OLS regression. In
step 2 the model can be reparameterized by conditiong on the marginal equation. The
parameters, now including τ , can then be estimated by a reduced rank and OLS regression
when r − n−m > 0. When r − n−m = 0 only OLS regression is needed.

Remark 4.1. The number of parameters in the matrix Π satisfying H†2(r) : Π = aβ′1 +
a⊥φβ

′
2 and the restriction c′(aβ′1 + a⊥φβ

′
2) = τd′ can be found counting the parameters

estimated by the recursive procedure. Remember rank(c̄′⊥a) = m and that c′a = 0 is
assumed. We take τ as fixed for the moment so τd′ is a known q× p matrix. First, β1 in
step 1 contains p · rank(c̄′⊥a) = pm parameters. Secondly, in step 2 we have to consider
the two cases.
If rank(a′⊥c̄⊥) ≥ r1 − n, it follows from Remark 3.3, since rank(τd′ − c′aβ′1) = q and
c′a = 0, that the number of parameters in a⊥φβ

′
2 satisfying c′a⊥φβ

′
2 = τd′ is (p−m)(r−

m) + (r −m)(p − r + m − q). We have used that s corresponds to p −m and that the
rank of φβ′2 is r −m. Thus the total number of parameters is pm+ (r −m)(2p− r − q).
If o = rank(a′⊥c̄⊥) < r1 − n the matrix c̄′⊥a⊥φβ

′
2 of dimension (p − q) × p of rank o

contains (p− q)o+ o(p− o) = o(2p− q− o) parameters. In this case the total number of
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parameters is therefore pm+ o(2p− q − o).
If also τ is unknown, the number of parameters is increased by nq.

5. AN APPLICATION

We consider the inflation model discussed in Example 2.2 In Boug et al. a data set
covering the period 1982:1-2005:4 was analysed. A reduced rank vector autoregressive
model with three lags, i.e. k = 2, an unrestricted constant, seasonal dummies and five
impulse dummies was fitted to the time series. Rank equal to 1 was found to yield a
satisfactory fit, the cointegration vector was estimated as

0.649ulct + 0.340uict = pt, 2 logLmax(H(r)) = 2536.72

and the adjustment parameters as α̂ = (0.175, 0.143,−0.056)′. Concerning the model
H1(1), Tables 3 amd 4 below show the result of testing whether ulct and uict are jointly
weakly exogenous for α3 and β and of testing whether uict is weakly exogenous for α1,
α3 and β. The p-value of the former is 0.02.

Now we turn to testing the modelH†1(1) against the modelH1(1). First we estimate the

model H†1(1) under the assumption that (ulct, uict)
′ is weakly exogenous for α3 and β in

addition to satisfying the exact rational expectations hypothesis defined in equation (2.5).

Then c = (0, 0, 1)′ and A = (0, 0, 1)′ such that c ∈ sp(A). Furthermore, c⊥ =

 1 0
0 1
0 0


and A′c⊥ = (0, 0). Then u = 0 and v = (0, 0)′ such that v⊥ = I2, G = I3 and Xt = X∗t ,
see (3.9).

The equations described in Section 3.2 become

v′⊥c̄
′
⊥∆Xt = ∆

(
ulct
uict

)
=

2∑
i=1

c̄′⊥Γi∆Xt−i + c̄′⊥ΦDt + c̄′⊥εt,

c′∆Xt = ∆pt = τd′Xt−1 +

2∑
i=1

τid
′
i∆Xt−i + c′ΦDt + ε3t,

where d contains some fixed values of δ1, δ2 and Dt denotes the deterministic terms, i.e.
the unrestricted constant, the seasonal dummies and the six impulse dummies. If τ is
known the system can be estimated by first regressing ∆ulct and ∆uict on ∆ulct−i, i =
1, 2, ∆uict−i, i = 1, 2, ∆pt−i, i = 1, 2, and ∆pt − τd′Xt−1 and Dt, and then regressing
∆pt − τd′Xt−1 on d′1∆Xt−1, d′2∆Xt−2 and Dt.

When τ is an unknown parameter we can compute the profile likelihood. The maximum
likelihood estimator is the value that maximizes this profile likelihood. Alternatively one
may employ the method based on generalized least squares described in Section 3.2 to
find the maximal value of the likelihood. Under the usual regularity condition the rational
expectation hypothesis restrictions and the weak exogeneity can be tested by a likelihood
ratio test. The number of parameters in the reduced rank VAR model is 3 + 2 + 18 = 23
in addition to the coefficients of constants and dummies. The corresponding number
after imposing the restrictions is 1 + 12 + 2 = 15. The appropriate degrees of freedom is
therefore 8 when τ must be estimated.

We next estimate the model H†1(1) under the assumption that that uict is weakly
exogenous for (α1, α3)′ and β in addition to satisfying the exact rational expectations
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hypothesis defined in equation (2.5). Then

A =

 1 0
0 0
0 1


and c = (0, 0, 1)′ as before such that also now c ∈ sp(A). Also

A′c⊥ =

(
1 0
0 0

)
=

(
1
0

)
(1, 0) = uv′.

Thus v̄′c̄′⊥ = (1, 0, 0) = e′1 and v′⊥c̄
′
⊥ = (0, 1, 0) = e′2. Also in this case therefore G = I3

and the equations described in Section 3.2 now become

v̄′c̄′⊥∆Xt = ∆ulct = θd′Xt−1 +

2∑
i=1

e′1Γi∆Xt−i + e′1ΦDt + ε1t,

v′⊥c̄
′
⊥∆Xt = ∆uict =

2∑
i=1

e′2Γi∆Xt−i + e2ΦDt + ε2t,

c′∆X3t = ∆pt = τd′Xt−1 +

2∑
i=1

τid
′
i∆Xt−i + e′1ΦDt + ε3t.

The system can be estimated by first regressing ∆ulct on d′Xt−1, ∆ulct−i, i = 1, 2,
∆uict−i, i = 0, 1, 2, ∆pt−i, i = 1, 2, ∆pt − τd′Xt−1 and Dt, then regressing ∆uict on
∆ulct−i, i = 1, 2, ∆uict−i, i = 1, 2, ∆pt−i, i = 1, 2, ∆pt − τd′Xt−1 and Dt and finally
by regressing ∆pt − τd′Xt−1 on d′1∆Xt−1, d′2∆Xt−2 and Dt,

In this case there is an additional parameter under the hypothesis so the likelihood ratio
test has 7 degrees of freedom. As before τ is treated as an unknown parameter and the
maximum likelihood estimates can be obtained from the profile likelihood. Alternatively
the approach based on generalized least squares can be used to find the maximal value
of the likelihood.

The maximal values of 2 log likelihood from fitting the two models are displayed in
Table 2 and Table 3 when d = (−δ1,−δ2, 1)′ is fixed as d = (−2/3,−1/3, 1)′. Choosing
the known d as d = (−2/3,−1/3, 1) is a sensible choice. As mentioned in Boug et al.
(2017), Aukrust (1977) pointed out that for Norway the direct effect on consumer prices
of a proportionate increase in import prices is around 0.33 percent. The p-value of the
hypothesis that uict is weakly exogenous for α1, α3, and β is 0.10. The further hypothesis
imposing in addition rational expectations, i.e. (2.5), is also not rejected.

The maximum likelihood estimate for τ is denoted by τ̂ . Ignoring the cross equation
restrictions, as pointed out in Remark 3.8, implies that τ is estimated by regression
from the marginal equation for ∆X3,t. As one can see this estimate, denoted by τ̃ , is
numerically quite similar to the result when the cross equation restrictions are taken into
account. The estimated standard error is 0.012 such that an approximate 95% confidence
interval is (−0.075,−0.028).

Often the matrix d contains unknown parameters. Then an additional maximization
is necessary for testing weak exogeneity and the rational expectations hypothesis simul-
taneously as proposed here. For the situation where d = (−δ,−(1 − δ), 1)′ the profile
likelihood, maximizing also over τ is shown in Figure 1 using the procedure nlm in the
software package R, R (2020), for two situations. In one only unit import cost is consid-
ered as weakly exogenous in addition to satisfying the rational expectation hypothesis
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Table 2. Summary of tests of ulct and uict jointly weakly exogenous and of the restriction
(2.5) with α1 = α2 = 0. For H†1(1) d′ = (−2/3,−1/3, 1)′ is fixed. LR is the likelihood
ratio.

Model 2 logLmax(Model) −2 logLR df p-value τ̂ τ̃
H(1) 2536.72 - - - - -
H1(1) 2528.81 7.91 2 0.02 - -

H†1(1) 2524.91 3.90 6 0.69 -0.052 -0.051

Table 3. Summary of tests of uict weakly exogenous and of the restriction (2.5) with

α2 = 0. For H†1(1) d′ = (−2/3,−1/3, 1)′ is fixed. LR is the likelihood ratio.

Model 2 logLmax(Model) −2 logLR df p-value τ̂ τ̃
H(1) 2536.72 - - - - -
H1(1) 2534.06 2.66 1 0.10 - -

H†1(1) 2531.03 3.03 6 0.81 -0.048 -0.051

and in the other both unit labour cost and unit import cost are similarly treated. The
maxima are 2531.06 and 2526.16 respectively corresponding to τ̂ = 0.65 and τ̂ = 0.58.
The test statistics for testing weak exogeneity and the rational expectation hypothesis
simultaneously agaist H(1) are therefore 5.66 and 10.56 with 6 and 7 degrees of freedom,
which correspond to p-values 0.46 and 0.16 respectively. For the case where only uict
is weakly exogenous in addition to satisfying the rational expectation hypothesis a 95%
confidence interval for δ is (0.48,0.81).

Remark 5.1. The model fitted in this application is more general than model (2.1).
The linear rational expectation relation (2.2) will for the more general model also imply
restrictions on the coefficients of the deterministic variables. Regressing on these variables
as we did means that the additional restriction are not taken into account. Hence, the
test is for a more general model than the one described by the linear rational expectation
relation. It only pertains to restrictions on the coefficients on the stochastic variables.

6. CONCLUSION

The theme of this paper has been analyzing cointegrated vector autoregressive models
with restrictions on the error correction parameters and in addition restrictions from
exact rational expectations imposed. We considered estimation and testing in such models
where the error correction parameters satisfied the same restrictions, i.e. α = Aψ, and
also for some special cases the situation where some of the error correction parameters
were known.
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Figure 1. Profile likelihood for unit import cost weakly exogenous in addition to satisfying
the rational expectation hypothesis (solid) and for unit labour cost and unit import cost
weakly exogenous in addition to satisfying (2.5) (dashed). A 95% confidence interval is
indicated in the former case.
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Boug, P., Å. Cappelen and A.R. Swensen (2010). The new Keynesian Phillips curve
revisited. Journal of Economic Dynamics and Control 34, 858-874.
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APPENDIX A: DETAILS OF RANK(A′C̄⊥) < R−N OF SUBSECTION 3.2

The model, taking the restrictions into account, can be written

c̄′⊥∆Xt = vu′ψβ′Xt−1 +

k∑
i=1

c̄′⊥Γi∆Xt−i + c̄′⊥µ+ c̄′⊥εt,

c′∆Xt = τd′Xt−1 +
∑̀
i=1

τid
′
i∆Xt−i + c′µ+ c′εt.

The conditional equation, conditioning on c′∆Xt and the past, of c̄′⊥∆Xt and the marginal
equation of c′∆Xt are

c̄′⊥∆Xt = vu′ψβ′Xt−1 +

k∑
i=1

c̄′⊥Γi∆Xt−i + c̄′⊥µ (A.1)

− ωc̄⊥·c(c′∆Xt − τd′Xt−1 −
∑̀
i=1

τid
′
i∆Xt−i − c′µ) + c̄′⊥εt − ωc̄⊥·cc′εt

c′∆Xt = τd′Xt−1 +
∑̀
i=1

τid
′
i∆Xt−i + c′µ+ c′εt. (A.2)

where ωc̄⊥·c = E[c̄′⊥εtε
′
tc](E[c′εtε

′
tc])
−1 and ωcc = E[c′εtε

′
tc].

The coefficient matrix vu′ψβ′ in equation (A.1) has dimension (p− q)× p and rank o.
Since o = s−q ≤ p−q, the equation (A.1) can be estimated by a combination of reduced
rank and ordinary OLS regressions. The parameters in equation (A.2) can be estimated
by OLS regressions.

APPENDIX B: CASE B OF SUBSECTION 4.1

When 0 < m = r, α = a all adjustment parameters are known. The transformed model
with the restrictions incorporated is

c̄′⊥∆Xt = c̄′⊥aβ
′Xt−1 +

k∑
i=1

c̄′⊥Γi∆Xt−i + c̄′⊥µ+ c̄′⊥εt,

c′∆Xt = τd′Xt−1 +
∑̀
i=1

τid
′
i∆Xt−i + c′µ+ c′εt.

The only parameters of the matrix Π are the elements of β. When r > rank(c̄′⊥a) the
model is not identified since the elements of β cannot be distinguished. The possibility r <
rank(c̄′⊥a) is impossible since rank(c̄′⊥a) ≤ rank(a) = m = r. Therefore, for identified
models v2 = c̄′⊥a has dimensions (p − q) × r and full rank r. Note also that r = m =
rank(c̄′⊥a) ≤ min(rank(c̄′⊥), rank(a)) = min(p− q, r) ≤ p− q.
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The restricted model, by multiplying the equation for c̄′⊥∆Xt with (v̄2, v2⊥)′, can be
decomposed into three parts

v̄′2c̄
′
⊥∆Xt = β′Xt−1 +

k∑
i=1

v̄′2c̄
′
⊥Γi∆Xt−i + v̄′2c̄

′
⊥µ+ v̄′2c̄

′
⊥εt,

v′2⊥c̄
′
⊥∆Xt =

k∑
i=1

v′2⊥c̄
′
⊥Γi∆Xt−i + v′2⊥c̄

′
⊥µ+ v′2⊥c̄

′
⊥εt,

c′∆Xt = τd′Xt−1 +
∑̀
i=1

τid
′
i∆Xt−i + c′µ+ c′εt.

Define the parameters as in Section 3.2 and premultiply (β′, 0, dτ ′)′ with the matrix K,
see (3.11), to get

K

 β
0
τd′

 =

 β′ − ω13.2τd
′

−ω2.3τd
′

τd′

 .

The conditional equations of (∆X ′tc̄⊥v̄2,∆X
′
tc̄⊥v2⊥,∆X

′
tc)
′ are therefore given by

 v̄′2c̄
′
⊥∆Xt

v′2⊥c̄
′
⊥∆Xt

c′∆Xt

 =

 ω12.3 ω13.2 β′ − ω13.2τd
′ Γ∗∗∗11 Γ∗∗∗12 µ∗∗1

0 ω2.3 −ω2.3τd
′ Γ∗∗∗21 Γ∗∗∗22 µ∗∗2

0 0 τd′ Γ∗∗∗31 0 µ∗3

Z∗∗t +

 ε∗∗1t
ε∗∗2t
ε∗3t

 ,

where now

Z∗∗′t =
(
∆X∗′2t,∆X

∗′
3t, X

′
t−1,∆X

∗′
t−1, . . . ,∆X

∗′
t−k, 1

)
.

The parameters in the equation for v̄′2c̄
′
⊥∆Xt using β′ − ω13.2τd

′, are variation inde-
pendent of the parameters in the equations for v′2⊥c̄

′
⊥∆Xt and c′∆Xt. The coefficient

−ω2.3τd
′, however, represents a cross equation restriction as a product of ω2.3 from the

equation for v′2⊥c̄
′
⊥∆Xt, and τ from the equation for c′∆Xt. Arguing as in Section 3.2

one can first assume that τ is known, introduce the variable c′∆Xt − τd′Xt−1, estimate
by ordinary least squares and finally optimize over τ .

An alternative procedure is also in this case to estimate τ using the SUR procedure of
Remark 3.6.
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