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Abstract

This paper develops tests for the correct specification of the conditional variance

function in GARCH models when the true parameter may lie on the boundary of

the parameter space. The test statistics considered are of Kolmogorov-Smirnov and

Cramér-von Mises type, and are based on a certain empirical process marked by cen-

tered squared residuals. The limiting distributions of the test statistics are not free

from (unknown) nuisance parameters, and hence critical values cannot be tabulated.

A novel bootstrap procedure is proposed to implement the tests; it is shown to be

asymptotically valid under general conditions, irrespective of the presence of nuisance

parameters on the boundary. The proposed bootstrap approach is based on shrinking

of the parameter estimates used to generate the bootstrap sample toward the boundary

of the parameter space at a proper rate. It is simple to implement and fast in applica-

tions, as the associated test statistics have simple closed form expressions. A simulation

study demonstrates that the new tests: (i) have excellent finite sample behaviour in

terms of empirical rejection probabilities under the null as well as under the alterna-

tive; (ii) provide a useful complement to existing procedures based on Ljung-Box type

approaches. Two data examples are considered to illustrate the tests.
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1 Introduction

Generalized autoregressive conditionally heteroskedastic (GARCH) models introduced by

Bollerslev (1986) are widely used for modelling various financial time series processes. The

data generation mechanism of a GARCH model requires the conditional variance to be always

strictly positive, which is generally obtained by imposing a strictly positive intercept and non-

negative GARCH coefficients in the conditional variance equation. Consequently, in GARCH

models, the admissible parameter space typically needs to be inequality restricted. This

represents an important difference between GARCH and other popular time series models,

such as AR and ARMA models. Although omnibus specification testing in GARCH type

models against unspecified alternatives has attracted considerable attention in the recent

literature, a crucial weakness in the current theory remains the exclusion of the presence of

nuisance parameters on the boundary. This paper contributes towards addressing this issue

by developing new statistical methodology for specification testing in GARCH models.

There are a number of different GARCH models available in the literature and many

of them are nonnested models (see Francq and Zaköıan, 2010). Therefore, in many cases,

a sensible way to proceed when testing a specification of a GARCH model is to leave the

alternative model unspecified, or to test the lack-of-fit. This type of tests, also known as

omnibus tests, have their roots in the seminal work of Kolmogorov (1933) on testing for a

specific probability distribution function, and Grenander and Rosenblatt (1957) on testing

the hypothesis of white noise dependence. Several omnibus specification tests in GARCH

type models have been proposed in the literature. These include tests based on weighted em-

pirical processes of standardized residuals (Koul and Ling, 2006; Escanciano, 2010), spectral

distributions based tests in the frequency domain (Hidalgo and Zaffaroni, 2007; Escanciano,

2008), residual based tests for nonnegative valued processes (Fernandes and Grammig, 2005;

Koul et al., 2012; Perera et al., 2016), and Khmaladze type (Khmaladze, 1981) martingale

transformations based tests (Bai 2003; Perera and Koul 2017), amongst others.

A key regularity condition imposed by the aforementioned specification tests is to restrict

the true parameter to the interior of the null parameter space. Since the parameter space

of a GARCH-type model is inequality restricted, this condition is not typically satisfied if

some ARCH or GARCH coefficients are zero, because then the true parameter may lie on

the boundary of the parameter space. Therefore, for the theory developed in the above cited

papers, the true parameter being an interior point is essential; for example, the limiting

process obtained in Theorem 2.1 in Hidalgo and Zaffaroni (2007) would not be Gaussian

if, for instance, a GARCH(p, q) model is estimated when the underlying true process is a

GARCH(p − 1, q), or a GARCH(p, q − 1) process. Similarly, the asymptotic properties of

the other aforementioned papers would also not hold when some nuisance parameters lie on
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the boundary.

In this paper we contribute towards the literature of specification testing in GARCH

models by developing a new class of tests for the correct specification of the conditional

variance function while allowing the null model to have an unknown number of nuisance

parameters on the boundary of the parameter space. Our test statistics are functionals of

an empirical process marked by centered squared residuals and are easy to compute. The

limiting distributions of the test statistics are not free from (unknown) nuisance parameters,

and hence critical values cannot be tabulated for general use. We propose a bootstrap method

to implement the tests and show that it is asymptotically valid under general conditions,

irrespective of the presence of nuisance parameters on the boundary. The proposed bootstrap

approach is simple to implement, and is based on a method of shrinkage of the parameter

estimates used to generate the bootstrap sample toward the boundary of the parameter

space at an appropriate rate. This approach is similar to the related bootstrap scheme

advocated in Cavaliere et al. (2021), in a different context, for bootstrapping likelihood

ratio statistics, and it also has its roots in the modified bootstrap approach considered in

Chatterjee and Lahiri (2011) for bootstrapping Lasso-type estimators. Our bootstrap tests

are shown to be consistent against fixed alternatives. We also separately consider the case

the nuisance parameters lie in the interior of the parameter space for Kolmogorov-Smirnov

and Cramér-von Mises type tests based on the aforementioned marked empirical process,

and show that the bootstrap implementations of these tests under standard residual based

bootstrap are asymptotically valid and consistent. Our tests can be implemented easily

because the test statistics have simple closed form expressions. A simulation study shows

that the proposed tests have desirable finite sample properties. We illustrate the testing

procedure by considering two real data examples.

The rest of this paper is structured as follows. Section 2 formulates the problem, defines

the estimators and test statistics. Section 3 provides the results relating to the asymptotic

validity and consistency of the bootstrap tests when the parameters are in the interior of the

parameter space. Section 4 considers inference when some components of the true parameter

lie on the boundary of the parameter space. Section 5 describes a simulation study. Two

empirical illustrations are discussed in Section 6. Section 7 concludes the paper. The proofs

and some assumptions are relegated to Appendix A.

2 Formulation of the Problem

Let (Y1, Y2, . . . , Yn) be a realization of an observable stationary process {Yi} satisfying

Yi = h
1/2
i εi, i ∈ Z := {0,±1,±2, · · · }, (1)

3



where the errors εi, i ∈ Z, are independent and identically distributed (i.i.d.) random

variables (r.v.’s) having zero mean and unit variance with common cumulative distribution

function (c.d.f.) F0, and hi = E[Y 2
i | Hi−1], where Hi−1 denotes the information available up

to time i− 1 for forecasting Yi, i ∈ Z.

As is well-known, a GARCH(p1, p2) model for hi takes the form

hi = hi(φ) = ω +

p1∑
j=1

αjY
2
i−j +

p2∑
k=1

βkhi−k(φ), i ∈ Z; (2)

the vector of parameters φ = (φ1, . . . , φp1+p2+1)′ = (ω, α1, . . . , αp1 , β1, . . . , βp2)
′, usually be-

longs to a compact parameter space

Φ ⊂ (0,∞)× [0,∞)p1+p2 (3)

with ω > 0, αk ≥ 0 (k = 1, . . . , p1), βk ≥ 0 (k = 1, . . . , p2), and in order to avoid well-known

identification issues (see also Assumption (A3) below) one typically imposes
∑p1

k=1 αk 6= 0.

Suppose we wish to test the adequacy of the above GARCH(p1, p2) model for hi, i.e., to

test the null hypothesis

H0 : hi = hi(φ0) = ω0 +

p1∑
j=1

α0jY
2
i−j +

p2∑
k=1

β0khi−k(φ0), a.s. for all i, and (4)

for some φ0 = (ω0, α01, . . . , α0p1 , β01, . . . , β0p2)
′ ∈ Φ,

against the alternative H1 : H0 is not true.

Since some ARCH or GARCH coefficients may be zero, the null model (4) allows some

components of φ0 to be on the boundary of the parameter space Φ.

Let φ̂ denote the Gaussian quasi maximum likelihood estimator [QMLE] defined by

φ̂ = arg min
φ∈Φ

n∑
i=1

`i(φ), `i(φ) = log hi(φ) + [Y 2
i /hi(φ)], (5)

with hi(φ) being defined recursively by (2) for i = 1, 2, . . . , n. To simplify the exposition,

the vector of initial values, ς0 = (Y0, . . . , Y1−p1 , h0, . . . , h1−p2)
′ ∈ Rp1× [0,∞)p2 , is assumed to

be fixed for the statistical analysis. The asymptotic results do not change if ς0 is replaced by

an arbitrarily chosen vector (e.g., by setting Yt = 0 and ht = 0, all t ≤ 0); see, for example,

the discussions in Straumann and Mikosch (2006), Perera and Silvapulle (2021) and Jensen

and Rahbek (2004).

Let ε̂i := Yi/{hi(φ̂)}1/2, i = 1, . . . , n, denote the estimated residuals. With φ ∈ Φ, we

propose an omnibus test statistic based on the marked empirical process:

Un(y,φ) := n−1/2

n∑
i=1

{
Y 2
i

hi(φ)
− 1

}
I(Yi−1 ≤ y), y ∈ R, φ ∈ Φ, (6)
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where I denotes the indicator function. We allow the domain of Un(·,φ) to extend over

the whole real line by letting Un(−∞,φ) := 0 and Un(∞,φ) := n−1/2
∑n

i=1{Y 2
i /hi(φ)− 1}.

Hence, Un(·,φ) in (6) can be viewed as a process in the space of cadlag functions on [−∞,∞],

equipped with the uniform metric, which we denote by D(R). This process is an extension

of the so-called cumulative sum process for the one sample setting to the current set up.

Under H0, EUn(y,φ0) = 0, for all y, but not under H1. Hence, if H0 is true, then we

would expect Un(y, φ̂ ) to be close to zero for all y, but not otherwise. Therefore, a suitable

functional of Un(·, φ̂ ) can potentially be used as a test statistic for testing H0 against H1.

The use of cumulative sum processes for specification testing similar to Un(·, φ̂ ) goes

back to von Neumann (1941), who proposed a test of constant regression based on an analog

of this process. A motivation for basing inference in nonnegative valued processes on an

analog of the process Un(·,φ), φ ∈ Φ, also appears in Koul et al. (2012). Similar tests

have also been considered by Stute (1997) and Koul and Stute (1999) for certain regression

and additive time series models. More recently, analogs of Un(·, φ̂ ) have been used by

several authors to propose asymptotically distribution free specification tests in related time

series models; see, for example, Perera and Koul (2017) and Balakrishna et al. (2019). In

the econometric analyses presented in these papers certain tests based on analogs of Un(·, φ̂ )

have demonstrated desirable finite sample and asymptotic properties. Therefore, we find it of

interest to develop specification tests based on similar statistics involving the process Un(·, φ̂ )

for testing H0 against H1 in the current setup. In particular, we consider the Kolomogorov-

Smirnov (KS) and Cramér-von Mises (CvM) type statistics which can be defined in terms

of Un(·, φ̂) as:

T1 := KS = sup
y

∣∣Un(y, φ̂)
∣∣, T2 := CvM =

∫
U2
n(y, φ̂ )dGn(y), (7)

where Gn(y) := n−1
∑n

i=1 I(Yi−1 ≤ y). Other suitable functionals of Un(·, φ̂ ) may also be

considered as possible test statistics (see D’Agostino and Stephens, 1986).

3 Inference when the parameters are in the interior of

the parameter space

Before moving to the general case which includes possible parameters on the boundary of

the parameter space, we here consider the case the true parameter φ0 is in the interior of Φ.

The asymptotic distribution of Un(·,φ0) under the null hypothesis H0 can be derived

by standard arguments, under the assumptions on the GARCH process discussed in the

next subsection. Specifically, from a martingale central limit theorem [for example Hall and

Heyde (1980), Corollary 3.1] and the Cramér-Wold device it follows that all finite dimensional
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distributions of Un(·,φ0) converge weakly to a multivariate normal distribution with mean

vector zero and covariance matrix given by the covariance function

K(x, y) := E(ε2
i − 1)2I(Yi−1 ≤ x ∧ y) = (κε − 1)G(x ∧ y), x, y ∈ R, (8)

where G denotes the (unconditional) distribution function (d.f.) of Y0, κε := Eε4
i < ∞ and

x ∧ y = min(x, y). Under H0, G may depend on φ0, but we do not exhibit this dependence.

Then, since the function π(x) := K(x, x) = (κε − 1)G(x) is nondecreasing and nonnegative,

tightness of the process Un(·,φ0) follows by e.g. Theorem 15.7 in Billingsley (1968), and

therefore, under H0, Un(·,φ0) converges weakly to the time-transformed Brownian motion

B ◦ π, in the space D(R) equipped with the uniform metric.

However, since φ0 is replaced by φ̂, the weak limit of Un(·, φ̂ ) will not be of the form

B◦π; rather, it depends on (φ0, G). We derive this result in the next subsection, where weak

convergence of Un(·, φ̂ ) is derived for the case where the true value φ0 lies in the interior of

the parameter space.

3.1 Asymptotics for the original test statistics

First we introduce some notation to facilitate the presentation of the underlying assumptions

for the asymptotic results. LetAφ(z) =
∑p1

i=1 αiz
i and Bφ(z) = 1−

∑p2
i=1 βiz

i withAφ(z) = 0

if p1 = 0 and Bφ(z) = 1 if p2 = 0. Furthermore, let

A0i =


α01ε

2
i · · · α0p1ε

2
i β01ε

2
i · · · β0p2ε

2
i

Ip1−1 0 0

α01 · · · α0p1 β01 · · · β0p2

0 Ip2−1 0

 , i ≥ 1,

with Ik denoting the k × k identity matrix.

In order to study the limiting behaviour of Un(·, φ̂) we make the following assumptions

on the process {Yi}i∈Z which satisfies (1)–(2).

(A1). The parameter space Φ in equation (3) is a compact subset of (0,∞) × [0,∞)p1+p2,

and contains a hypercube of the form [ωL, ωU ]× [0, ε]p1+p2, for some ε > 0 and ωU > ωL > 0,

which includes the true parameter φ0.

(A2). The sequence of matrices A0 = (A01, A02, . . .) has a strictly negative top Lyapunov

exponent; i.e., γ(A0) = limi→∞ i
−1 log ‖A0iA0(i−1) . . . A01‖ < 0, and

∑p2
j=1 βj < 1, ∀φ ∈ Φ.

(A3). Aφ0
(1) 6= 0, α0p1 +β0p2 6= 0, and the polynomials Aφ0

(z) and Bφ0
(z) have no common

roots if p2 > 0.
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(A4). The errors εi, i ∈ Z, are i.i.d. with zero mean and unit variance, ε2
i has a non-

degenerate distribution, and E|εi|4+d <∞ for some d > 0.

The condition γ(A0) < 0 in (A2) ensures the existence of a unique strictly stationary

solution {Yi}i∈Z to Model (1)–(2); see, e.g. Bougerol and Picard (1992a). Note that, in (A2),

the strict stationarity condition γ(A0) < 0 is imposed only on the true value φ0, but for

φ 6= φ0 we only impose the weaker restriction
∑p2

j=1 βj < 1. In Assumption (A3), the

condition Aφ0
(1) 6= 0 ensures that all the α0i are not zero when p1 6= 0, and hence we

do not allow the strictly stationary solution of (1)–(2) to be a strong white noise process.

This in turn allows us to avoid certain identifiability issues when estimating the GARCH

parameters with p2 6= 0 (see Francq and Zaköıan, 2010). Note that, in the ARCH case

(i.e. when p2 = 0), the Assumption (A3) is not required. In the general GARCH case

when p2 > 0, the Assumption (A3) allows for an overidentification of either the order of the

ARCH parameters p1 or the order of the GARCH parameters p2, but not both. The condition

E|εi|4+d <∞ in Assumption (A4) is only required for the existence of the variance of the score

vector ∂`i(φ0)/∂φ; this is necessary for establishing the limiting distribution of the QMLE.

Note that we do not assume that the true parameter φ0 is in the interior of Φ. Thus, the

assumptions do not exclude the cases where some αi or βj are zero. Assumptions similar

to (A1)–(A4) have previously been discussed in the literature for establishing asymptotic

properties of the QMLE; see, e.g., Francq and Zaköıan (2010) and Cavaliere et al. (2021).

Let

J(y,φ) := E[τ 1(φ)I(Y0 ≤ y)], τ i(φ) :=
(∂/∂φ)hi(φ)

hi(φ)
, i ∈ Z, φ ∈ Φ.

The next lemma provides an asymptotic uniform expansion for Un(y, φ̂). We make use of

this expansion in the proof of establishing the weak convergence of Un(·, φ̂).

Lemma 1. Suppose that Assumptions (A1) and (A4) hold. Then, uniformly in y ∈ R,

Un(y, φ̂) = Un(y,φ0)− n1/2(φ̂− φ0)′J(y,φ0) + op(1). (9)

Unlike the process Un(y,φ0), the estimated process Un(y, φ̂) does not converge weakly to

a time transformed Brownian motion, because the term n1/2(φ̂ − φ0)′J(y,φ0) in (9), is of

order Op(1) and hence is not asymptotically negligible. In fact, if Assumptions (A1)–(A3) are

satisfied, then φ̂ converges to φ0 almost surely (a.s.), and additionally, if Assumption (A4)

also holds and φ0 is an interior point in Φ, then φ̂ is asymptotically linear and satisfies

n1/2(φ̂− φ0) = −Σ−1
n (φ0)n−1/2

n∑
i=1

(1− ε2
i )τ i(φ0) + op(1), (10)
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where

Σn(φ) := n−1

n∑
i=1

τ i(φ)τ i(φ)′, τ i(φ) :=
(∂/∂φ)hi(φ)

hi(φ)
, φ ∈ Φ;

see, for example, Berkes et al. (2003).

By using Lemma 1 and (10), when φ0 is an interior point in Φ, one can show that Un(·, φ̂)

converges weakly to a centred Gaussian process. This result is stated in the next theorem.

Theorem 1. Suppose that (A1)–(A4) are satisfied with φ0 being an interior point in Φ. Let

Mi(φ) := −Σ−1(φ)(1− ε2
i )τ i(φ), Σ(φ) := E{τ 1(φ)τ 1(φ)′}, φ ∈ Φ, i ∈ Z.

Then, the process Un(·, φ̂) converges weakly to U0 in D(R), where U0 is a centred Gaussian

process with covariance kernel

Cov{U0(x),U0(y)} = K(x, y) + J ′(x,φ0)E[M1(φ0)M ′
1(φ0)]J ′(y,φ0)

−J ′(x,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ y)]

−J ′(y,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ x)],

where K(x, y) is as in (8).

In view of Theorem 1, the limiting distributions of KS and CvM statistics defined in (7)

depend on the unknown (φ0, G) in a non-trivial way, despite the fact the true parameter is

in the interior of Φ. Consequently, it does not appear that it would be possible to find a

transformation that would lead to an asymptotically distribution free test, for example as in

Bai (2003); Koul et al. (2012); Perera and Koul (2017); Escanciano et al. (2018). Hence, we

proceed by considering bootstrap implementations of the tests.

3.2 Bootstrap implementation

In this section, we propose a bootstrap procedure for computing the critical values for the KS

and CvM statistics in (7). We perform the resampling scheme under the null hypothesis and

derive the asymptotic properties of the bootstrap statistics, irrespective of whether or not

the data generating process satisfies the null hypothesis. To this end, we initially standardize

the residuals ε̂i := Yi/{hi(φ̂)}1/2, i = 1, . . . , n, as

ε̌i :=
{
n−1

n∑
t=1

ε̄2
t

}−1/2

ε̄i, ε̄i := ε̂i − n−1

n∑
t=1

ε̂t, i = 1, . . . , n, (11)

and define the associated empirical distribution function of {ε̌1, . . . , ε̌n} as

F̌n(x) := n−1

n∑
i=1

I(ε̌i ≤ x), x ∈ R. (12)
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By construction,
∫
R uF̌n(u)du = 0 and

∫
R u

2F̌n(u)du = 1, hence a random variable with

distribution function F̌n has zero mean and unit variance, therefore matching the first and

second order moments of the error distribution F0. From Lemma A.1 in Appendix A we

obtain that F̌n converges to F0 with probability one under the null hypothesis.

We next outline the bootstrap algorithm.

Bootstrap algorithm 1

Step 1: Compute {φ̂, Tj} on the original sample {Y1, . . . , Yn}, where Tj is the test statistic

defined in (7) (j = 1, 2);

Step 2: Compute ε̌i, i = 1, . . . , n as in (11) and draw a random sample (with replacement)

of size n, say {ε∗1, . . . , ε∗n}, independent of the original data, from the empirical distribution

function F̌n(·) in (12);

Step 3: Generate the bootstrap sample {Y ∗1 , . . . , Y ∗n } with bootstrap true values (φ̂, F̌n) by

Y ∗i = {h∗i (φ̂)}1/2ε∗i , h∗i (φ̂) = ω̂ +

p1∑
j=1

α̂j(Y
∗
i−j)

2 +

p2∑
k=1

β̂kh∗i−k(φ̂), i ≥ 1

initialized with (Y ∗0 , . . . , Y
∗

1−q, h
∗
0 (φ̂), . . . , h∗1−p(φ̂))′ = ς0, where ς0 is an arbitrarily chosen

vector (e.g. Y ∗t = 0 and h∗t = 0, all t ≤ 0);

Step 4: Using {Y ∗1 , . . . , Y ∗n }, compute φ̂
∗
, the bootstrap analog of φ̂;

Step 5: Compute the bootstrap test statistic T ∗j as

T ∗1 = KS∗ = sup
y

∣∣U∗n(y, φ̂
∗
)
∣∣, T ∗2 = CvM∗ =

∫ {
U∗n(y, φ̂

∗
)
}2

dG∗n(y), (13)

where G∗n(y) and U∗n(y,φ) are the bootstrap analogs of Gn(y) and Un(y,φ), respectively.

The bootstrap p-value is then defined as

p∗n := P ∗n(T ∗j ≥ Tj) (14)

where P ∗n denotes the probability measure induced by the bootstrap (i.e., conditional on the

original data). The bootstrap test corresponds to the decision rule:

Reject H0 at the nominal level α if the estimated p-value p∗n is less than α. (15)

As is standard, p∗n of (14) is unknown. It can be approximated with arbitrary accuracy by

repeating steps 2–5 a large number of times, say B, and then setting p
∗(B)
n to be the fraction

of times T ∗j exceeds Tj.

The above bootstrap algorithm is designed to mimic the null data generating process by

replacing the unknown (φ0, F0) by the estimators (φ̂, F̌n). Therefore, to establish the validity
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of the bootstrap test in (15), we need to generalize the regularity assumptions of Lemma 1

and Theorem 1 allowing an arbitrary true value (φ, F ) in a neighbourhood of (φ0, F0). The

required conditions are introduced as Assumptions (B1)–(B5) in Appendix A. Theorem 2

below establishes the asymptotic validity of the bootstrap test (15) under (B2)–(B5).

In the bootstrap setup, we define G∗n(y) := n−1
∑n

i=1 I(Y ∗i−1 ≤ y), y ∈ R. Similarly, the

bootstrap analogue of the marked empirical process Un(y,φ) in (6) is defined by

U∗n(y,φ) := n−1/2

n∑
i=1

{
(Y ∗i )2

h∗i (φ)
− 1

}
I(Y ∗i−1 ≤ y), y ∈ R, φ ∈ Φ. (16)

Let O∗p(1), in probability, o∗p(1), in probability, and E∗ denote the usual stochastic orders of

magnitude and expectation, respectively, with respect to P ∗n defined above. We denote con-

vergence in distribution of bootstrap statistics as ‘
d∗−→’. That is, ‘T ∗j

d∗→ gj(U0) in probability ’

means that P ∗n(T ∗j ≤ ·)
p→ P{gj(U0) ≤ ·}, at every continuity point of P{gj(U0) ≤ ·}.

Next theorem establishes the asymptotic validity of the bootstrap test (15) under H0.

Theorem 2. Suppose that Assumptions (A1)–(A4) and H0 are satisfied and φ0 is an interior

point in Φ. Additionally, assume that Assumptions (B2)–(B4) hold with (φ∗0, F
∗
0 ) = (φ0, F0).

Let U0 be the limit process appearing in Theorem 1. Then, conditional on {Y1, . . . , Yn},

1. U∗n(·, φ̂
∗
) converges weakly to U0, in probability.

2. g{U∗n(·, φ̂
∗
)} d∗→ g{U0}, in probability, for any continuous function g : D(R)→ R.

3. There exists a continuous functional gj : D(R) → R such that T ∗j = gj{U∗n(·, φ̂
∗
)} +

o∗p(1), in probability (j = 1, 2).

In view of Theorem 2, the bootstrap test (15) based on Tj is asymptotically valid under H0

(j = 1, 2). The next theorem shows that the bootstrap tests are consistent under H1.

First we need to introduce some notation. Let (φ∗0, F
∗
0 ) be the probability limit of (φ̂, F̌n),

such that φ̂
p→ φ∗0 and d2(F̌n, F

∗
0 )

p→ 0 as n → ∞, where d2(FX , FY ) is the Mallows metric

for the distance between two probability distributions FX and FY (see also Lemma A.1 in

Appendix A). Clearly, under the null hypothesis H0, we have that (φ∗0, F
∗
0 ) = (φ0, F0).

Theorem 3. Suppose that H1 holds. Assume that (φ̂, F̌n) converges in probability to (φ∗0, F
∗
0 ),

the pseudo-true value under H1. Additionally, assume that Assumptions (B1)–(B5) hold,

n1/2(φ̂−φ∗0) = Op(1), and (A6) holds if some components of φ∗0 are zero. Then, conditional

on {Y1, . . . , Yn}, the bootstrap test (15) based on Tj has asymptotic power 1 (j = 1, 2).

In view of Theorem 3, our tests have asymptotic power against a given alternative as long

as Assumptions (B1)–(B5) hold, (A6) holds if some components of φ∗0 are zero, and n1/2(φ̂−

10



φ∗0) = Op(1). Assumption (B1) introduces some regularity conditions in order to ensure the

stationarity of the bootstrap data generating process under H1. Assumptions (B2)–(B4) are

the same as in Theorem 2 except that now (φ∗0, F
∗
0 ) 6= (φ0, F0), and Assumption (B5) claims

that there exists a y ∈ R such that E[{h1/h1(φ∗0)−1}I(Y0 ≤ y)] 6= 0, where hi = E(Y 2
i | Hi−1),

i ∈ Z. Since hi is not of the form hi(φ) under H1 and (φ∗0, F
∗
0 ) is the pseudo-true value, the

requirement E[{h1/h1(φ∗0) − 1}I(Y0 ≤ y)] 6= 0 is not very restrictive under H1. However, in

finite samples, the power of the tests can be sensitive to the form of the discrepancy between

hi and hi(φ̂). More precisely, if hi(φ̂) is significantly different from hi such that the magnitude

of the process n−1/2
∑n

i=1{Y 2
i /hi(φ̂) − 1}I(Yi−1 ≤ y) is ‘large’ for some y, then the KS and

CvM functionals of n−1/2
∑n

i=1{Y 2
i /hi(φ̂)− 1}I(Yi−1 ≤ y) are likely to be significantly large

compared to realizations from the empirical distributions of KS∗ and CvM∗, respectively,

leading to finite sample power of the bootstrap tests. Importantly, if the true conditional

variance hi is non-linear while the null parametric form hi(φ) is linear, then our tests are

likely to have better finite sample power compared to the case where hi and hi(φ) are both

linear and the misspecification is only in terms of some missing lags, because in the latter

case the KS and CvM functionals of n−1/2
∑n

i=1{Y 2
i /hi(φ̂) − 1}I(Yi−1 ≤ y) are likely to be

smaller compared to the former.

For the validity of our bootstrap tests we have so far required the true value φ0 to be an

interior point of Φ under H0. It is of interest to see whether the bootstrap implementation

of Tj(j = 1, 2) can be modified to obtain a consistent bootstrap test for the case φ0 lies on

the boundary of Φ under H0. We consider this in the next section.

4 Inference when the true value is on the boundary

Heuristic arguments suggest that T1 and T2 in (7) could serve as possible test statistics for

testing H0 against H1 regardless of whether φ0 lies in the interior or on the boundary of the

parameter space. In fact, from Lemma 1, under assumptions (A1) and (A4), we have

Un(y, φ̂) = Un(y,φ0)− n1/2(φ̂− φ0)′J(y,φ0) + op(1), (17)

uniformly in y ∈ R, irrespective of whether φ0 is in the interior or on the boundary of Φ,

with Un(·,φ0) converging weakly to a time transformed Brownian motion. Therefore, the

weak limit of Un(·, φ̂ ), and hence the limiting distributions of T1 and T2, depend on the

asymptotic behaviour of n1/2(φ̂−φ0)′J(·,φ0). Hence, to establish the limiting distributions

of the test statistics it is essential to study the large sample properties of φ̂ when φ0 lies on

the boundary of the parameter space. Several important results on this have already been

obtained by Andrews (2001) and Francq and Zakoian (2007). For the ease of reference, in

the next subsection, we summarize some of these results in the notation used in this paper.

11



4.1 Limiting distributions of the estimators

In this section, we summarize several technical results regarding the asymptotic behaviour of

the QMLE φ̂ in (5) when some components of φ0 are allowed to be zero, and hence φ0 could

be on the boundary of Φ. First, we introduce the following additional regularity condition.

(A5). bj(φ0) > 0 for all j ≥ 0, where hi(φ0) =
∑∞

j=1 bj(φ0)Y 2
i−j.

Condition (A5) is equivalent to assuming that the ARCH coefficients being nonzero up

to the order of the first GARCH coefficient that is zero. As shown in Berkes et al. (2003), a

recursive formula may be obtained to compute bj(φ) for any given j. Further, we have that

bj(φ) → 0 exponentially fast as j → ∞, uniformly in φ ∈ Φ. This means that there exists

some 0 < ν < 1 such that ν−j supφ∈Φ bj(φ)→ 0 as j →∞.

Since the parameter φ0 is allowed to contain zero components, by the assumption that Φ

contains a hypercube (see (A1)), the space n1/2(Φ− φ0) increases to the convex cone

Λ = Λ(φ0) = Λ1 × Λ2 × · · · × Λp1+p2+1,

where Λ1 = R, and for each i = 2, . . . , p1 + p2 + 1, denoting φ0 = (φ01, . . . ,φ0(1+p1+p2))
′,

Λi = R if φ0i 6= 0 and Λi = [0,∞) if φ0i = 0. Next lemma shows that, under (A1)–(A5),

the asymptotic distribution of n1/2(φ̂−φ0) can be represented as the projection of a normal

vector distribution onto Λ; for further details on the nature of this projection, see Section 4

in Francq and Zakoian (2007).

Lemma 2. Suppose that Assumptions (A1)-(A3) are satisfied. Then, φ̂
a.s.→ φ0, as n→∞.

Additionally, assume that Assumptions (A4) and (A5) are also satisfied. Then,

n1/2(φ̂− φ0)
d→ λΛ := arg inf

λ∈Λ
(λ− Z)′Σ(φ0)(λ− Z),

where Z ∼ N (0, (κε − 1)Σ−1(φ0)), Σ(φ) := E{τ 1(φ)τ 1(φ)′}, φ ∈ Φ.

The proof of Lemma 2 follows from Francq and Zakoian (2007). If φ0 is an interior point,

then Λ = Rp1+p2+1 and λΛ = Z ∼ N (0, (κε − 1)Σ−1(φ0)), which is the same as the classical

case (e.g., see Berkes and Horváth, 2004) as we also considered in the previous section.

4.2 Inconsistency of the standard bootstrap test with parameters

on the boundary

The bootstrap true parameter value, say φ∗n, plays a crucial role in defining the properties

of any bootstrap test. For the standard bootstrap test in Section 3.2 we set φ∗n equal to φ̂.

In the proof of Theorem 2, under Assumptions (A1)–(A4) and (B2)–(B4), we obtain that

12



the limiting behaviour of n1/2(φ̂
∗
− φ∗n), conditional on (Y1, . . . , Yn), is the same as that of

n1/2(φ̂−φ0), under H0, since φ0 is an interior point and φ∗n = φ̂. This result plays a key role

in the proof of establishing the validity of the bootstrap tests for the case the true parameter

lies in the interior of the parameter space. Convergence results of this type have also been

used in establishing the asymptotic validity of other bootstrap methods in similar contexts

(see Hidalgo and Zaffaroni, 2007; Perera et al., 2016).

However, in the current setup, the parameter φ0 is allowed to contain zero components,

and hence we require additional conditions to ensure that the bootstrap tests are consistent.

In particular, a crucial requirement for the validity of the bootstrap tests is to have the

following rate of consistency for the bootstrap true value φ∗n = (φ∗n1, . . . ,φ
∗
n(1+p1+p2))

′:

n1/2(φ∗ni − φ0i) =

{
op(1), if φ0i = 0

Op(1), if φ0i > 0
, i = 1, 2, . . . , 1 + p1 + p2. (18)

This requirement has previously been introduced in Cavaliere et al. (2021) for establishing the

validity of a bootstrap based inference procedure in a different context. In the current setup,

the requirement (18) ensures that the bootstrap method based on φ∗n replicates the unknown

limiting distribution of Tj under the null, while being of order O∗p(1), in probability, under

the alternative (j = 1, 2), as is established in Theorems 4 and 5 below. If we set φ∗n = φ̂,

then it only holds that n1/2(φ∗ni−φ0i) = Op(1) for i = 1, 2, . . . , 1 + p1 + p2, and hence (18) is

not satisfied. Therefore, the standard bootstrap test outlined in Section 3.2 is not consistent

when some parameters lie on the boundary of Φ. Hence, in the next subsection, instead

of the standard bootstrap, we propose a new bootstrap method based on using a different

mechanism in choosing the bootstrap true values φ∗ni, i = 1, 2, . . . , 1 + p1 + p2.

4.3 Consistent bootstrap implementations

In this section we propose a modified bootstrap testing procedure based on shrinking the

parameter estimators in the bootstrap data generation. The main idea is that, instead of

using φ̂ = φ̂n = (φ̂n1, . . . , φ̂n(1+p1+p2))
′ as the true value in the bootstrap data generation, we

make use of a transformed version of φ̂, denoted φ̂
†

= φ̂
†
n = (φ̂

†
n1, . . . , φ̂

†
n(1+p1+p2))

′ defined by

φ̂
†
ni := φ̂niI(φ̂ni > cn) i = 1, 2, . . . , 1 + p1 + p2, (19)

where cn is a scalar sequence converging to zero at an appropriate rate:

cn → 0, and n1/2cn →∞ as n→∞. (20)

This approach has its roots in the Hodges-Le Cam super-efficient type estimators, see e.g.

Bickel et al. (1998), Chatterjee and Lahiri (2011) and Cavaliere et al. (2021).

13



In view of the parameter restrictions in (3), denoting φ0 = (φ01, . . . ,φ0(1+p1+p2))
′, we

have that φ01 = ω0 > 0, φ0i = α0(i−1) ≥ 0 (i = 2, . . . , 1 + p1), and φ0i = β0(i−1−p1) ≥
0 (i = 2 + p1, . . . , 1 + p1 + p2). Thus, φ01 is always in the interior, and φ0j is on the

boundary of the parameter space only if φ0j = 0 for some j ∈ {2, 3, . . . , 1 + p1 + p2};
i.e. some ARCH or GARCH coefficient is zero. Since φ̂ is root-n consistent, the proposed

shrinkage in terms of the cn sequence ensures that P (φ̂
†
nj = 0) → 1 as n → ∞ whenever

plim φ̂nj = 0, j ∈ {2, 3, . . . , 1 + p1 + p2}, where ‘plim’ is the probability limit as n → ∞.

Hence, unlike φ̂nj, in large samples, the transformed estimator φ̂
†
nj lies on the boundary of

the parameter space with large probability whenever φ0j is on the boundary; i.e. φ0j = 0.

Since n1/2(φ̂ − φ0) = Op(1) and cn converges at a rate slower than n−1/2, this ensures

that the requirement (18) is satisfied by the parameter φ̂
†
n defined by (19)–(20). Hence,

as established in Theorems 4 and 5 below, the bootstrap based on φ∗n = φ̂
†
n allows us to

replicate the unknown limiting distributions of T1 and T2 under H0, while being of order

O∗p(1), in probability, under the alternative.

We next provide a step-by-step guide of the proposed modified bootstrap approach.

Bootstrap algorithm 2 (shrinking parameter estimators approach)

Step 1: Compute {φ̂, Tj} on the original sample {Y1, . . . , Yn};
Step 2: Compute ε̌i, i = 1, . . . , n as in (11) and draw a random sample (with replacement)

of size n, say {ε∗1, . . . , ε∗n}, independent of the original data, from the empirical distribution

function F̌n(·) := n−1
∑n

i=1 I(ε̌i ≤ ·);
Step 3: Generate the bootstrap sample {Y ∗1 , . . . , Y ∗n } with bootstrap true values (φ̂

†
, F̌n) as

Y ∗i = {h∗i (φ̂
†
)}1/2ε∗i , h∗i (φ̂

†
) = ω̂† +

p1∑
j=1

α̂†j(Y
∗
i−j)

2 +

p2∑
k=1

β̂
†
kh
∗
i−k(φ̂

†
), i ≥ 1

initialized with (Y ∗0 , . . . , Y
∗

1−p1 , h
∗
0 (φ̂

†
), . . . , h∗1−p2(φ̂

†
))′ = ς0, where ς0 is an arbitrarily chosen

vector (e.g., set Y ∗t = 0 and h∗t = 0, all t ≤ 0);

Step 4: Using {Y ∗1 , . . . , Y ∗n }, compute {φ̂
∗
, T ∗j } the bootstrap analogs of {φ̂, Tj}.

The bootstrap test then corresponds to the decision rule:

Reject H0 at the nominal level α if the estimated p-value p∗n is less than α. (21)

The bootstrap p-value p∗n is defined as in (14), and it can be approximated with arbitrary

accuracy by repeating steps 2–4 a large number of times, say B, and then setting p
∗(B)
n to

be the fraction of times T ∗j exceeds Tj (j = 1, 2).

Note that, the limiting distribution of n1/2(φ̂
†
−φ0) is the same as that of n1/2(φ̂−φ0)

whenever φ0 is in the interior of Φ. Hence, the bootstrap test (21) collapses into the bootstrap

method outlined in Section 3.2 as n→∞, whenever φ0 is in the interior of Φ.
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4.4 Asymptotic validity

In this section we establish the asymptotic validity of the bootstrap based on the shrinking

parameter estimators approach introduced in the previous subsection.

Note that the bootstrap analogue of the marked empirical process Un(y,φ) for the boot-

strap test (21) is defined as in (16), with

U∗n(y,φ) := n−1/2

n∑
i=1

{
(Y ∗i )2

h∗i (φ)
− 1

}
I(Y ∗i−1 ≤ y), y ∈ R, φ ∈ Φ,

except that Y ∗i and h∗i (φ) are now based on the bootstrap method outlined in Section 4.3.

The next theorem establishes the asymptotic validity of the bootstrap test (21). First, we

introduce the following additional assumption. Recall that F0 is the c.d.f of εi in (1).

(A6). The Assumptions (A1)–(A5) continue to hold when ζ0 = (φ0, F0) is replaced by

ζn = (φn, Fn), where ζn → (φ∗0, F
∗
0 ) := plim(φ̂, F̌n) as n→∞.

Since Assumptions (A1)–(A5) correspond to the original data generating process, the

underlying true parameter value ζ0 = (φ0, F0) is fixed. However, in the bootstrap data

generation the true parameter (φ̂
†
, F̌n) is not fixed but converges to (φ∗0, F

∗
0 ) as n → ∞.

Therefore, it is not adequate to assume only (A1)–(A5) in order to establish the validity of

the bootstrap tests. Assumption (A6) ensures that (A1)–(A5) hold for triangular arrays,

and hence allows us to extend the arguments in the proof of Lemma 2 to a triangular array

setup, which in turn is essential for establishing that the limiting distribution of n1/2(φ̂
∗
−φ̂

†
n),

conditional on (Y1, . . . , Yn), is the same as that of n1/2(φ̂−φ0) under H0, while being of order

O∗p(1), in probability, under H1. This result plays a key role in the proofs of the asymptotic

validity and consistency of the bootstrap tests obtained in the next two theorems.

Theorem 4. Suppose that Assumptions (A1)–(A6) and (B2)–(B4) hold. Then, under H0,

the conditional weak limit of U∗n(·, φ̂
∗
) is the same as that of Un(·, φ̂), in probability, and

hence the bootstrap test (21) based on Tj is asymptotically valid (j = 1, 2).

The next theorem establishes the consistency of the bootstrap test (21).

Theorem 5. Suppose that H1 holds. Assume that the estimator φ̂ converges in probability

to some point in Φ, and F̌n in (12) converges in probability with respect to the Mallows met-

ric. Suppose that Assumptions (B1)–(B4) hold with (φ∗0, F
∗
0 ) := plim(φ̂, F̌n). Additionally,

assume that Assumption (A6) holds, n1/2(φ̂ − φ∗0) = Op(1) and there exists a y ∈ R, with

hi = E(Y 2
i | Hi−1), i ∈ Z, such that E[{h1/h1(φ∗0)− 1}I(Y0 ≤ y)] 6= 0. Then, conditional on

{Y1, . . . , Yn}, the bootstrap test (21) based on Tj has asymptotic power 1 (j = 1, 2).
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Theorem 4 shows that the proposed shrinkage in terms of the cn sequence, or more

generally, the requirement (18) ensures that the bootstrap test statistics T ∗1 and T ∗2 based

on (21) replicate the unknown limiting distributions of T1 and T2 under the null hypothesis.

Theorem 5 establishes that T ∗1 and T ∗2 are of orderO∗p(1), in probability, under the alternative;

that is, the proposed bootstrap method is also consistent even if it is unknown whether any

of the nuisance parameters are on the boundary or not.

5 Numerical Study

In this section we carry out a Monte Carlo simulation study to evaluate the finite sample

performance of the KS and CvM tests based on the bootstrap method (21) in Section 4.3.

Our main focus is the case where the true parameter value φ0 of the data generating pro-

cess lies on the boundary of the parameter space. For comparison, we also consider the

case where φ0 is an interior point. Several data generating processes under the alternative

hypothesis are also considered in order to investigate the finite sample power properties of

the tests. Although there are several other tests that can be applied for testing the condi-

tional variance specification in GARCH-type models, as mentioned in the introduction, the

theory for their validity does not hold when the true parameter is on the boundary. Hence,

in these simulations, we compare the proposed tests with the general purpose Ljung-Box Q

test which tests the significance of the serial dependence of the squared residuals estimated

from the fitted model. We denote the Ljung-Box Q test for a lag length ` by LBQ(`).

5.1 Design of the simulation study

Tests are evaluated when the parametric form hi(φ) under H0 is

HA0 [GARCH(1,1)]: hi(φ) = ω + αY 2
i−1 + βhi−1(φ),

HB0 [GARCH(1,2)]: hi(φ) = ω + αY 2
i−1 + β1hi−1(φ) + β2hi−2(φ).

For the error distribution, we consider the standard normal distribution.

For the conditional variance hi of the true data generating process [DGP] we consider

the following 9 cases:

DGP1 [ARCH(1)]: hi = 0.20 + 0.7Y 2
i−1, [HA0 and HB0 both true]

DGP2 [GARCH(1,1)]: hi = 0.10 + 0.20Y 2
i−1 + 0.70hi−1, [HA0 and HB0 both true]

DGP3 [GARCH(1,2)]: hi = 0.10 + 0.10Y 2
i−1 + 0.15hi−1 + 0.70hi−2, [HA0 false and HB0 true]

DGP4 [GJR-GARCH(1,1)]1: [HA0 and HB0 both false]

hi = 0.10 + 0.1Y 2
i−1 + 0.5hi−1 + 0.3Y 2

i−1I(Yi−1 < 0),

1The Glosten-Jagannathan-Runkle GARCH model of Glosten et al. (1993).
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DGP5 [GARCH(2,2)]:

hi = 0.10 + 0.05Y 2
i−1 + 0.6Y 2

i−2 + 0.1hi−1 + 0.2hi−2, [HA0 and HB0 both false]

DGP6 [EGARCH(1,1)]:

ln hi = 0.1 + 0.4 ln hi−1 + 0.2(|εi−1| − E|εi−1|)− 0.2εi−1, [HA0 and HB0 both false]

DGP7 [i.i.d.]: hi = 1, [HA0 and HB0 both true, but Assumption (A3) false]

DGP8 [Threshold GARCH(1,1)]:

hi = 0.10 + 0.1Y 2
i−1 + 0.5hi−1 + 0.3hi−1I(Yi−1 < 0), [HA0 and HB0 both false]

DGP9 [T-CHARM]2: hi = I(Yi−1 ≤ 0) + 1.2I(Yi−1 > 0). [HA0 and HB0 both false.]

DGPs 1, 2, 3, 5 and 7 are linear models. We use these DGPs to evaluate the size and power

properties of the tests, focusing particularly on the cases where the true parameter lies on

the boundary. The DGPs 4, 6, 8 and 9 are nonlinear models, and hence the linear models

specified under the null hypotheses HA0 and HB0 are misspecified for each of DGPs 4, 6, 8

and 9. We use these four DGPs to evaluate the finite sample power properties of the tests.

In the next two subsections we consider testing for the two null models HA0 [GARCH(1,1)]

and HB0 [GARCH(1,2)] separately. The results are based on 2000 Monte Carlo replications.

For each replication and data generating process, we first compute the QMLE φ̂ and compute

the test statistics KS, CvM, and LBQ(`), ` = 3, 5, 10, 15, 20. To implement the proposed KS

and CvM tests we use the bootstrap method (21) outlined in Section 4.3 with cn = n−1/3/50,

while adopting the ‘Warp-Speed’ Monte Carlo method of Giacomini et al. (2013) in order to

reduce the computational burden. The results are presented in Figures 1–6. In these figures

the results of the LBQ(`) tests are presented for only ` = 5, 10 and 15; the patterns of the

results for ` = 3 and ` = 20 are similar to those for ` = 5, 10 and 15 and hence are omitted.

5.2 Testing for HA
0 [GARCH(1,1)]

The DGP1 [ARCH(1)] and DGP2 [GARCH(1,1)] are members of the null family under

HA0 . For the DGP1, the GARCH coefficient is zero, and hence the true parameter lies on

the boundary of the parameter space. For the DGP2, the true parameter is an interior

point. The DGP7 [i.i.d.] is a member of the null family HA0 with the true value on the

boundary. However, since there are no ARCH or GARCH coefficients, the DGP 7 does not

satisfy Assumption (A3) and hence the theory developed in this paper does not apply in this

case. The DGPs 3, 4, 5, 6, 8 and 9 are considered in order to evaluate the empirical power

properties of the tests; these DGPs are part of the alternative hypothesis. A summary of

the results are given in Figures 1, 2, 5 and 6, and are discussed in Section 5.4.

2T-CHARM refers to the conditionally heteroscedastic AR models proposed by Chan et al. (2014).
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5.3 Testing for HB
0 [GARCH(1,2)]

The DGPs 1, 2 and 3 are members of the null family HB0 [GARCH(1,2)]. For each of DGP1

and DGP2, one of ARCH or GARCH coefficients is zero, and hence the true parameter lies

on the boundary of the parameter space. The true parameter of the DGP3 [GARCH(1,2)]

is an interior point. Since there are no ARCH or GARCH coefficients, when testing for HB0 ,

the DGP7 does not satisfy Assumption (A3) and hence as in the previous case, the theory

developed in this paper does not apply. The DGPs 4, 5, 6, 8 and 9 continue to be under the

alternative hypothesis when testing for GARCH(1,2).

The results are given in Figures 3, 4, 5 and 6, and are discussed in the next subsection.

5.4 Summary of the results

The main observations of the simulation results are the following:

(i) The KS and CvM bootstrap tests proposed in this paper perform consistently well in

terms of the Type-I error rate. By contrast the LBQ test does not perform well in

terms of finite sample size at any of the lag lengths considered. In particular, for every

instance in which the DGP is under the null hypothesis, the LBQ test is significantly

undersized at each of the lag lengths considered.

(ii) No significant difference in performance of the KS and CvM tests can be identified,

in terms of Type-I error rates, irrespective of whether the true parameters are on

the boundary or not. Thus, the simulation results indicate that the bootstrap method

based on the shrinking parameter estimators approach outlined in Section 4.3 performs

well irrespective of whether the true value of φ is on the boundary or in the interior.

(iii) Both KS and CvM tests exhibit good overall power properties. In particular, they

exhibit excellent power gains compared to the LBQ test when the DGP is non-linear.

Although the LBQ test performs better than KS and CvM when the DGP is linear

and the misspecification is in terms of some missing lags, the power gains are not as

significant as in the cases where KS and CvM outperform LBQ. In particular, the LBQ

test does not exhibit any empirical power against the nonlinear DGPs, DGP4, DGP6,

DGP8 and DGP9, when testing for both HA0 [GARCH(1,1)] and HB0 [GARCH(1,2)].

As expected, the empirical power of KS and CvM tests increase with the significance

level α and the sample size n. Overall, in terms of empirical power, the CvM test

performs marginally better than the KS test.
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Figure 1: Empirical rejection rates for testing HA0 [GARCH(1,1)]
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Notes: DGPs 1 and 2 are under HA0 . The true parameter for the DGP1 is a boundary

point. For the DGP2, the true parameter is an interior point. Although the DGP7

[i.i.d.] is a member of the null family HA0 , with the true value on the boundary, it does

not satisfy all the conditions assumed for establishing the validity of the bootstrap tests.
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Figure 2: Empirical power of KS and CvM for testing HA0 [GARCH(1,1)]
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Notes: The DGPs 4–6 are considered to evaluate the power of the tests.
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Figure 3: Empirical rejection rates for testing HB0 [GARCH(1,2)] when the true parameter

lies on the boundary of the parameter space.
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Notes: For DGPs 1 and 2, the true parameter under HB0 lies on the boundary of the

parameter space.
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Figure 4: Empirical size and power for testing HB0 [GARCH(1,2)]. The sample size n = 2000.
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Notes: The DGP3 [GARCH(1,2)] is under HB0 ; the true parameter of the DGP3 is an

interior point of the parameter space. The DGPs 4, 5, and 6 are part of the alternative.
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Figure 5: Empirical power for testing HA0 [GARCH(1,1)] and HB0 [GARCH(1,2)] for the

DGP8 [Threshold GARCH(1,1)]: hi = 0.10 + 0.1Y 2
i−1 + 0.5hi−1 + 0.3hi−1I(Yi−1 < 0). KS · · · ,

CvM – · – · –, LBQ(5) – · ∗ · –, LBQ(10) – · o · –, LBQ(15) – · + · –, 45deg –.
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Notes: GARCH(1,1) and GARCH(1,2) are both misspecified for the DGP8.
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Figure 6: Empirical power for testing HA0 [GARCH(1,1)] and HB0 [GARCH(1,2)] for the

DGP9 [T-CHARM]: hi = I(Yi−1 ≤ 0) + 1.2I(Yi−1 > 0). KS · · · , CvM – · – · –, LBQ(5) –

· ∗ · –, LBQ(10) – · o · –, LBQ(15) – · + · –, 45deg angle –.
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Notes: GARCH(1,1) and GARCH(1,2) are both misspecified for the DGP9.
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6 Empirical illustrations

To illustrate the bootstrap testing procedure, we briefly discuss two real data examples.

Example 1

We first consider a data example based on the daily log returns of the SPDR exchange-traded

fund (ETF) for the S&P 500 index. This ETF is usually denoted by the tick symbol SPY.

The data spans the period January 3, 2007 to June 30, 2017 and contains 2640 observations.

A shorter version of this data set was previously studied by Tsay and Chen (2018), and by

using some preliminary diagnostics, they concluded that a GJR-GARCH(1,1) model provides

a good fit. In their empirical analysis, Tsay and Chen (2018) concluded that the leverage

effect of the fitted GJR-GARCH(1,1) model is statistically significant at the 5% level. This

indicates that if one specifies a GARCH(1,2) model for the conditional variance then that

may not provide a good fit for the data. In order to investigate this, in this empirical

illustration, we employ the proposed KS and CvM bootstrap tests to test the adequacy of

the GARCH(1,2) specification, expecting that the proposed tests would be able to detect a

misspecification. For comparison the LBQ test considered in the simulations in the previous

section is also considered.

For the GARCH(1,2) specification, the p-values of the KS and CvM tests are both zero

up to 3 decimal places, whereas the p-value for the LBQ(20) turns out to be 0.123, and

those for LBQ(15) and LBQ(5) are 0.032 and 0.033, respectively. Thus, the KS and CvM

tests proposed in this paper clearly reject the GARCH(1,2) specification, but the LBQ(20)

fails to reject the GARCH(1,2) specification at the 10% level of significance. Note that

the Ljung-Box Q test is designed to check the significance of the autocorrelations of the

squared residuals at multiple lags jointly. Figure 7 shows the sample autocorrelations for

both the squared values of the observed time series and the squared residuals estimated

from the fitted GARCH(1,2). As expected, squared SPY log returns are significantly serially

correlated, but the correlogram of squared residuals suggests no significant serial correlations

except for some minor ones at lags 1 and 10. This explains the relatively large p-values of

the LBQ test. However, squared residuals can be serially uncorrelated, but dependent, and

hence it appears that the tests proposed in this paper are better suited than the Ljung-Box Q

test in detecting the misspecification of the conditional variance specification in this case.
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Figure 7: Autocorrelogram of the squared SPY log returns time series (first panel), and the

squared residual correlogram for the fitted GARCH(1,2) model (second panel). The sample

period is from January 3, 2007 to June 30, 2017.
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Example 2

In this illustrative example we consider a data set from the Caterpillar stock traded on the

New York Stock Exchange. The variable of interest is the daily log return of the Caterpillar

stock, defined by Yt = 100(logPt− logPt−1) where Pt is the stock price at time t. The sample

contains 2515 observations and spans the period Jan 02, 2001 to Dec 31, 2010. Tsay (2013)

analyzed this data set by applying several diagnostic methods, and fitted a GARCH(1,1)

model (see Table 5.1 in Tsay, 2013). When we fit a GARCH(1,2) model to this data set, the

estimated GARCH(2) coefficient turns out to be statistically insignificant, practically at any

level of significance. This indicates that, when testing the GARCH(1,2) specification, one

component of the true parameter could potentially be a boundary point of the parameter

space, whereas when the null model is GARCH(1,1) the true parameter could potentially be

an interior point. Of course we do not have any certainty that this is actually true. But, as

an illustration, we employ the proposed KS and CvM bootstrap tests to test GARCH(1,1)

and GARCH(1,2) specifications. For comparison the LBQ test is also considered. The p-

values of the tests are given in Table 1. As expected the tests support both GARCH(1,1) and

GARCH(1,2) specifications with large p-values. In the simulations in the previous section,

the LBQ test was undersized when testing for the correct specification. Thus, the large

p-values of the LBQ test in Table 1 are consistent with the simulation results reported in

the previous section.
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Table 1: The p-values of the specification tests for testing GARCH(1,1) and GARCH(1,2)

specifications for the conditional variance of the daily log-return of the Caterpillar stock.

The data spans the period Jan 02, 2001 to Dec 31, 2010.

Tests

Null model KS CvM LBQ(3) LBQ(5) LBQ(10) LBQ(15) LBQ(20)

GARCH(1,1) 0.363 0.332 0.943 0.995 0.999 0.999 0.999

GARCH(1,2) 0.491 0.427 0.880 0.978 0.999 0.998 0.999

7 Conclusion

This paper contributes to advance the current statistical methodology for inference in GARCH

models by developing bootstrap based omnibus specification tests while allowing parameters

on the boundary of the parameter space. In particular, Kolmogorov-Smirnov and Cramér-

von Mises type test statistics are proposed based on a certain empirical process marked by

centered squared residuals. We first derive the asymptotic null distributions of the proposed

test statistics when the true parameter is in the interior of the parameter space. Since the

limiting distributions of the test statistics are not free from (unknown) nuisance parameters,

we propose a bootstrap method to implement the tests and establish that the proposed boot-

strap method is asymptotically valid and consistent. However, when some components of

the nuisance parameters lie on the boundary of the parameter space, this bootstrap testing

procedure is not consistent. Hence, as an alternative, we also propose a modified version of

the bootstrap by employing a method of shrinkage of the parameter estimates in the boot-

strap data generation. We show that the modified bootstrap procedure is asymptotically

valid and consistent, regardless of the presence of nuisance parameters on the boundary.

Our bootstrap methods can be implemented easily under fairly general and easily verifiable

assumptions and have desirable finite sample properties in terms of empirical size and power.

Our results can be extended in several directions. For instance, it is of interest to see

if the methods we propose in this paper can be extended to models beyond the standard

GARCH(p1, p2). To this end, consider the model M defined by

M : Yi = h
1/2
i εi, hi = gφ(Yi−1, · · · , Yi−p1 , hi−1, · · · , hi−p2), i ∈ Z, (22)

for some φ ∈ Φ ⊂ Rp1+p2 , where {gφ;φ ∈ Φ} is a parametric family of nonnegative functions

on Rp1+p2 , and the error terms {εi}i∈Z are i.i.d. with zero mean and unit variance. Thus,
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hi = hi(φ) = Var(Yi | Hi−1), i ∈ Z. Consider the hypothesis testing problem

H0 : Model M is correct vs H1 : Model M is not correct. (23)

The GARCH(p1, p2) model is a special case of M. Another example is the asymmetric

AGARCH(p1, p2) model defined by hi = hi(φ) = α0+
∑p1

j=1 αj
(
|Yi−j|−γYi−j

)2
+
∑q

k=1 βkhi−k,

where φ = (α0, . . . , αp, β1, . . . , βq, γ)′, α0 > 0, αj ≥ 0, βk ≥ 0 (i ∈ Z, 1 ≤ j ≤ p, 1 ≤ k ≤ q).

Similarly, several other extensions of the standard GARCH model can also be written in the

general form (22).

Heuristic arguments suggest that the bootstrap tests proposed in this paper for ARCH(p)

and GARCH(p1, p2) models can also be extended to this general setup. In fact, the bootstrap

algorithm outlined in Section 4.3 can be readily applied to any model of the form (22), based

on a suitable estimator for φ. However, parameter estimation, when the true value is on

the boundary of the parameter space, in the family of models in (22), has not yet been

studied, and therefore it is not a trivial task to extend the methods developed in this paper

to a general setup of the form (22); this would provide a potential direction for a possible

extension of the paper. Furthermore, our testing procedures can also be potentially extended

to Poisson autoregressions with exogenous covariates as considered in Agosto et al. (2016).

A APPENDIX: Assumptions and Proofs

A.1 Some notations and assumptions

In this appendix we introduce some additional notation, and state Assumptions (B1)–(B5)

required for the main theorems. First, we generalize the data generating process specified by

model (1)–(4) for an arbitrary φ ∈ Φ and a given innovation distribution F with zero mean

and unit variance. To this end we need to first introduce the following regularity assumption.

(B1). The process {Yi}i∈Z is strictly stationary and ergodic and obeys model (1) under the

alternative hypothesis H1. The parameter space Φ is a compact subset of (0,∞)× [0,∞)p1+p2

and contains a hypercube of the form [ωL, ωU ]× [0, ε]p1+p2, for some ε > 0 and ωU > ωL > 0,

which includes φ∗0 = (ω∗0, α
∗
01, . . . , α

∗
0p1
, β∗01, . . . , β

∗
0p2

)′, where φ∗0 is the pseudo-true parameter

value under H1, defined by φ∗0 := plim φ̂, where ‘plim’ is the probability limit as n → ∞.

Further,
∑p1

i=1 α
∗
0i +

∑p2
j=1 β

∗
0j < 1 for p1 ≥ 1, p2 ≥ 0,

∑p1
i=1 α

∗
0i 6= 0.

The strict stationarity of the process {Yi : i ∈ Z} obeying (1)–(4), which follows from

(A1), (A2) and (A3), ensures that the true parameter φ0 = (ω0, α01, . . . , α0p1 , β01, . . . , β0p2)
′

under the null hypothesis H0 satisfies
∑p1

i=1 α0i +
∑p2

j=1 β0j < 1 (see Bougerol and Picard,

1992a,b). Assumption (B1) assumes that this continues to hold when φ∗0 is the pseudo true
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value under the alternative hypothesis H1. Since (φ∗0, F
∗
0 ) := plim(φ̂, F̌n), under the null

hypothesis H0, we have that (φ∗0, F
∗
0 ) = (φ0, F0), and under the alternative hypothesis H1,

(φ∗0, F
∗
0 ) is the pseudo-true value of (φ, F ). Therefore, if either H0 holds under (A1)–(A3)

or H1 holds under (B1), regardless of whether φ∗0 is in the interior or on the boundary of Φ,

for all sufficiently small ε > 0 and ωU > ωL > 0, there exists a hypercube of the form

Φ̄ := [ωL, ωU ]× [0, ε]p1+p2 ⊂ Φ (A.1)

including φ∗0, such that, for every φ ∈ Φ̄ and c.d.f. F (with mean 0 and variance 1), the

model defined by

Y
(φ,F )
i = {h(φ,F )

i (φ)}1/2ε
(F )
i ,

h
(φ,F )
i (φ) = ω +

p1∑
j=1

αj{Y (φ,F )
i−j }2 +

p2∑
j=1

βjh
(φ,F )
i−j (φ), (A.2)

has a unique strictly stationary and ergodic solution with E[{Y (φ,F )
0 }2] < ∞, where ε

(F )
i =

F−1(Ui) := inf{y ∈ R : F (y) ≥ Ui} and {Ui, i ∈ Z} are i.i.d. uniform(0,1) random variables,

for example, by Theorem 2.1 of Chen and An (1998).

For (φ, F ) = (φ0, F0) the model (A.2) is equivalent to the DGP defined by (1)–(4). Usu-

ally, φ0 and F0 are unknown. Hence, in order to generate data from a model that mimics

(1)–(4), one needs to replace (φ0, F0) by some known (φn, Fn) which is sufficiently close to

(φ0, F0). Let (φn, Fn) be such a sequence in the product space Φ̄×D(R), Fn is a c.d.f with

zero mean and unit variance (n ∈ N), such that (φn, Fn) → (φ∗0, F
∗
0 ) as n → ∞, with

‖φn −φ∗0‖ → 0 and d2(Fn, F
∗
0 )→ 0 as n→∞, where d2(FX , FY ) denotes the Mallows met-

ric for the distance between two probability distributions FX and FY (see Lemma A.1). Note

that, since (φ∗0, F
∗
0 ) = plim(φ̂, F̌n), we have (φ∗0, F

∗
0 ) = (φ0, F0) under H0, and (φ∗0, F

∗
0 ) is the

pseudo-true value under H1. In what follows, when the DGP (A.2) corresponds to (φn, Fn)

instead of using h
(φn,Fn)
i (·) and τ

(φn,Fn)
i (·), we let the analogs of hi(·) and τ i(·) be denoted

by hni(·) and τni(·), respectively. Note that, under H0, the probability laws of h
(φ0,F0)
i (·) and

τ
(φ0,F0)
i (·) are identical to those of hi(·) and τ i(·), respectively.

Next, let us introduce some notation. Let ‘dot’ denote differentiation:

ḣi(φ) = (∂/∂φ)hi(φ), ḧi(φ) = (∂/∂φ)ḣi(φ).

Let F denote the set of all c.d.f.’s with zero mean and unit variance, i.e,

F := {F ∈ D(R) : F is a c.d.f. with mean 0 and variance 1}.

For any given constant δ > 0, let F0
δ := {F ∈ F : d2(F, F ∗0 ) ≤ δ}.

We say that a sequence of random variables {Zi}i∈N converges to zero exponentially

almost surely, denoted Zi
e.a.s.→ 0, if there exists γ > 1 such that γiZi

a.s.→ 0 as i → ∞. The
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norm ‖ · ‖Λ for a continuous matrix-valued function H on a compact set Λ ⊂ Rr1 , that is

H ∈ C[Λ,Rr2×r3 ], is defined by ‖H‖Λ := sups∈Λ ‖H(s)‖, when r1, r2, r3 are known positive

integers. If H is real valued, then ‖H‖Λ = sups∈Λ |H(s)|. We let R̄ := [−∞,∞].

In order to establish the asymptotic validity of the bootstrap testing procedure we also

introduce the following additional assumptions. Recall that (φ∗0, F
∗
0 ) = plim(φ̂, F̌n).

(B2). There exist δ > 0 with E([supF∈F0
δ
{F−1(Ui)}2]2+d) <∞ for some d > 0.

(B3). If ‖φn−φ∗0‖ → 0 and d2(Fn, F
∗
0 )→ 0 as n→∞, then for every y ∈ R̄, we have that

EI(Y (φn,Fn)
1 ≤ y)→ EI(Y (φ∗

0,F
∗
0 )

1 ≤ y) as n→∞.

(B4). For every nonrandom sequence ζn := (φn, Fn) → ζ∗0 := (φ∗0, F
∗
0 ), where ζn ∈ Φ̄ × F ,

we have that E[τn1(φn)]→ E[τ
(φ∗0,F

∗
0 )

1 (φ∗0)], E[τn1(φn)τn1(φn)′]→ E[τ
(φ∗0,F

∗
0 )

1 (φ∗0)τ
(φ∗0,F

∗
0 )

1 (φ∗0)′]

as n→∞. Recall that τni(φ) := ḣni(φ)/hni(φ) with hni(φ) = h
(φn,Fn)
i (φ).

The next assumption is used in the proof of Theorem 3 to establish the consistency of

the bootstrap test (15) based on Tj (j = 1, 2).

(B5). There exists a y ∈ R, with hi = E(Y 2
i | Hi−1), i ∈ Z, such that E[{h1/h1(φ∗0)−1}I(Y0 ≤

y)] 6= 0 under H1, where φ∗0 is the pseudo-true value under H1.

A.2 Some preliminary results

In this subsection we obtain several preliminary lemmas required for the main proofs.

The next lemma shows that F̌n in (12) converges to F0 with probability 1.

Lemma A.1. Let d2(FX , FY ) denote the Mallows metric for the distance between two proba-

bility distributions FX and FY defined by d2(FX , FY ) = inf{E|X−Y |2}1/2, where the infimum

is over all square integrable random variables X and Y with marginal distributions FX and

FY . (a) Suppose that Assumptions (A1)–(A4) and H0 hold, and φ0 is an interior point in Φ.

Then, d2(F̌n, F0)
a.s.→ 0 as n → ∞. (b) Additionally, assume that Assumption (A5) is also

satisfied, then d2(F̌n, F0)
a.s.→ 0 as n→∞, irrespective of whether φ0 is in the interior of Φ.

Proof of Lemma A.1. Under Assumptions (A1)–(A3), φ̂ converges to φ0 (a.s.), irrespec-

tive of whether φ0 is in the interior of the parameter space (see Lemma 2). If, in addition,

(A4) is also satisfied and φ0 is in the interior of Φ, then φ̂ is asymptotically linear and

satisfies (10), and hence n1/2(φ̂−φ0) = Op(1). If Assumptions (A1)–(A5) are satisfied, then

n1/2(φ̂− φ0) = Op(1) by Lemma 2, irrespective of whether φ0 is in the interior of Φ.

Proof of Part (a): Assumptions (A1)–(A4) are satisfied, and φ0 is an interior point in Φ.
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Let Hn(x) := n−1
∑n

i=1 I(εi ≤ x), be the empirical distribution function of the unobserved

errors {ε1, . . . , εn}. From the triangular inequality we have that

d2(F̂n, F0) ≤ d2(F̂n, Hn) + d2(Hn, F0),

where Hn(x) := n−1
∑n

i=1 I(εi ≤ x), x ∈ R, is the empirical distribution function of the

unobserved errors {ε1, . . . , εn}.
We already have that d2(Hn, F0)

a.s.→ 0 as n→∞ (see, for example, Lemma 8.4 of Bickel

and Freedman, 1981). Thus, it suffices to show that d2(F̌n, Hn)
a.s.→ 0 as n→∞. To this end,

let J be a random variable having Laplace distribution on {1, . . . , n}, with P (J = i) = 1/n

for each i = 1, . . . , n. Define two random variables X(1) and Y (1) by

X(1) = εJ and Y (1) = ε̂J .

Then, X(1) and Y (1) have the marginal distributions Hn and F̌n respectively. Therefore,

{d2(F̌n, Hn)}2 = inf{E|X − Y |2} ≤ E{X(1) − Y (1)}2

= n−1

n∑
i=1

(εi − ε̌i)2 = (nσ̂2
n)−1

n∑
i=1

{σ̂nεi − (ε̂i − n−1

n∑
j=1

ε̂j)}2, (A.3)

where σ̂2
n = n−1

∑n
i=1{ε̂i − n−1

∑n
j=1 ε̂j}2.

Since φ̂
a.s.→ φ0 and n1/2(φ̂ − φ0) = Op(1), it follows that σ̂2

n
a.s.→ 1. Hence, for some

constant K > 0, (A.3) is bounded from above by

Kn−1

n∑
i=1

(ε̂i − εi)2 +Kn−2

( n∑
i=1

εi

)2

+Mn (A.4)

where Mn is a random variable that converges to zero with probability one. Here we have

used some arguments from the proof of Lemma 6 in Perera and Silvapulle (2021).

Furthermore, for some K <∞, we have that

n−1

n∑
i=1

(ε̂i − εi)2 ≤ Kn−1

n∑
i=1

ε2
i

[
{hi(φ0)}1/2 − {hi(φ̂)}1/2

]2
.

From Proposition A.1, we obtain that

{hi(φ̂)}1/2 − {hi(φ0)}1/2 = 2−1(φ̂− φ0)′ḣi(φ0)/{hi(φ0)}1/2 + op(n
−1/2). (A.5)

Because φ̂
a.s.→ φ0 and ‖Eε2

1ḣi(φ0)/{hi(φ0)}1/2‖ <∞, then we have that

n−1

n∑
i=1

ε2
i [{hi(φ̂)}1/2 − {hi(φ0)}1/2]

a.s.→ 0 as n→∞.
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Consequently, d2(F̌n, Hn)
a.s.→ 0 and hence d2(F̌n, F0)

a.s.→ 0.

Proof of part (b): Under Assumptions (A1)–(A5), from Proposition A.1 below, we obtain

that (A.5) holds irrespective of whether φ0 is in the interior of Φ. Since φ̂
a.s.→ φ0, and

n1/2(φ̂−φ0) = Op(1), then it follows that d2(F̌n, F0)
a.s.→ 0 by repeating the arguments of the

proof of part (a).

Lemma A.2. Suppose that either Assumption (A1) or Assumption (B1) is satisfied. Addi-

tionally, assume that Assumption (B2) holds. Then, for every ζ = (φ, F ) ∈ Φ̄×F0
δ

a) The model (A.2) has a unique stationary ergodic solution {Y (ζ)
i : i ∈ Z},

b) E[|Y (ζ)
i |4+d], E[|h(ζ)

i (φ)|2+d] and E[‖τ (ζ)
i (φ)‖2+d] are finite for some d > 0.

Proof. Let ζ = (φ, F ) ∈ Φ̄ × F0
δ be fixed and arbitrary. Since F has zero mean and unit

variance, the condition
∑p1

i=1 αi +
∑p2

j=1 βj < 1 is necessary and sufficient for the process

{Y (ζ)
i ; i ∈ Z} to be strictly stationary and have finite second moments with E(Y

(ζ)
i ) = 0 and

E[{Y (ζ)
i }2] = ω/(1 −

∑p1
i=1 αi −

∑p2
j=1 βj); see for example Nelson (1990) and Chen and An

(1998). Therefore, if H0 holds, then part (a) follows from Assumption (A1), and if H1 holds,

then it follows from Assumption (B1).

Since ε
(F )
i = F−1(Ui) with {Ui, i ∈ Z} being i.i.d. uniform(0,1) random variables, from

Assumption (B2), we have E([{ε(F )
i }2]2+d) <∞, and hence part (b) also follows.

Lemma A.3. Suppose that either Assumption (A1) or Assumption (B1) is satisfied. Ad-

ditionally, assume that Assumptions (B2)–(B4) hold. Then, for every nonrandom sequence

ζn := (φn, Fn)→ ζ∗0 := (φ∗0, F
∗
0 ), where ζn ∈ Φ̄×F , we have that

| n1/2(φ̂nn − φn)− Σ−1
nn(φn)n−1/2

n∑
i=1

τni(φn)(ε2
ni − 1) |= op(1), (A.6)

with Σnn(φ) := n−1
∑n

i=1 τni(φ)τni(φ)′, and εni = F−1
n (Ui), where φ̂nn is the analogue of φ̂

for the data generating process at (φn, Fn), and U = {Ui, i ∈ Z} denote a sequence of i.i.d.

random variables from the uniform(0,1) distribution.

Proof. The proof follows from arguing as in the proof of Lemma 4(a) in Perera and Silvapulle

(2020) for the GARCH(p1, p2) setup.

Lemma A.4. Suppose that either Assumption (A1) or Assumption (B1) is satisfied. Addi-

tionally, assume that Assumptions (B2)–(B4) hold. Then, for every constant C <∞,

i) sup |h1/2
ni (b)− h

1/2
ni (a)− 2−1(b− a)′ḣni(a)h

−1/2
ni (a)|h−1/2

ni (a) = op(n
−1/2),

ii) sup | hni(b)− hni(a)− (b− a)′ḣni(a) | h−1
ni (a) = op(n

−1/2),

where the supremum is taken over 1 ≤ i ≤ n and over {(b,a) : b, s ∈ Φ̄,
√
n‖b− a‖ ≤ C}.
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Proof of Lemma A.4. Let D := Φ̄×F0
δ , p = p1 +p2 +1. Let ℘ni(φ) = {hni(φ)}1/2 for φ ∈ Φ̄.

Let ∆ni(a, b) := h
1/2
ni (b) − h

1/2
ni (a) − 2−1(b − a)′ḣni(a)h

−1/2
ni (a). Let a, b ∈ Φ̄ be fixed but

arbitrary. Then, for each n ∈ N, there exists δn1 ∈ Rp, such that b = a + n−1/2δn1. Hence,

∆ni(a, b) = ℘ni(b) − ℘ni(a) − n−1/2δ′n1℘̇ni(a). Therefore, by the Mean Value Theorems for

functions from Rp to R, and Rp to Rp, with right partial derivatives, for every n ∈ N, there

exist δn2, δn3 ∈ Rp with ‖δn3‖ ≤ ‖δn2‖ ≤ ‖δn1‖, such that

∆ni(a, b) = n−1/2δ′n1

[
℘̇ni(a+ n−1/2δn2)− ℘̇ni(a)

]
= n−1δ′n1℘̈ni(a+ n−1/2δn3)δn2,

where

℘̈ni(φ) =
1

2

ḧni(φ)

{hni(φ)}1/2
− 1

4

τni(φ)ḧ ′ni(φ)

{hni(φ)}1/2
.

Therefore, for any given constant C > 0, w.p. 1,

max
1≤i≤n

sup
a,b∈Φ̄,

√
n‖b−a‖≤C

n1/2|∆ni(a, b)| ≤ n−1/2C2 max
1≤i≤n

‖℘̈ni‖Φ̄. (A.7)

For example, for the GARCH(1,1) case, by differentiation, we have

ḣni(φ) = {(1− β)−1,
∞∑
j=1

βj−1Y 2
n(i−j), ω(1− β)−2 + α

∞∑
j=2

(j − 1)βj−2Y 2
n(i−j)}′,

and the 3× 3 matrix ḧni(φ) is given by

[ḧni]rk(φ) = 0 for r = 1, 2, k = 1, 2, [ḧni]13(φ) = [ḧni]31(φ) = (1− β)−2,

[ḧni]23(φ) = [ḧni]32(φ) =
∞∑
j=2

(j − 1)βj−2Y 2
n(i−j), and

[ḧni]33(φ) = 2ω(1− γ)−3 + α
∞∑
j=3

(j − 2)(j − 1)βj−3Y 2
n(i−j).

One can similarly obtain the derivatives for the GARCH(p1, p2) for any given p1, p2.

Since supζ∈D ‖h
(ζ)
i (·)‖Φ̄ > ωL > 0, then part (i) follows under (B2)–(B4), by arguing as

in the proof of Lemma 4 in Perera and Silvapulle (2021) applying Chebyshev’s inequality.

The part (ii) follows similarly under (B2)–(B4).

The next lemma follows from the proof of Theorem 13.1 in Billingsley (1968) and an

application of the Cauchy-Schwarz inequality; see also Lemma 5.1 in Stute (1997). We

restate this result here for the ease of reference. This lemma is useful for establishing the

tightness of certain processes.

Lemma A.5. Let {(ai, bi); 1 ≤ i ≤ n} be i.i.d. square-integrable bivariate random vectors

with E(ai) = E(bi) = 0, 1 ≤ i ≤ n. Then we have that E{(
∑n

i=1 ai)
2(
∑n

j=1 bj)
2} ≤ nE(a2

1b
2
1)+

3n(n− 1)E(a2
1)E(b2

1).
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For the proof of Lemma 1 we make use of the following proposition.

Proposition A.1. Suppose that the assumptions of Lemma 1 hold. Then, for every K <∞,

(a) n1/2 sup | h1/2
i (t)− h

1/2
i (s)− 2−1(t− s)′ḣi(s)h

−1/2
i (s) | h−1/2

i (φ0) = op(1),

(b) n1/2 sup | hi(t) − hi(s) − (t − s)′ḣi(s) | h−1
i (φ0) = op(1), where the supremum is taken

over 1 ≤ i ≤ n and over {(t, s) : t, s ∈ Φ,
√
n‖t− s‖ ≤ K}.

Proof. The proof follows as a special cases of the proof of Lemma A.4.

A.3 Initialization effect

In this section we obtain several technical results to establish that the effect of initializa-

tion in the bootstrap data generation is asymptotically negligible. First let us introduce

some notation.

Notation A: If data are generated from (A.2) for i ≥ −m, conditional on a vector of starting

values ς0 = (y0, · · · , y1−q, s0, · · · , s1−p)
′, then we use the superscript “(m, ζ)” instead of “(ζ)”,

where ζ = (φ, F ). For example, h
(m,ζ)
i (·) and τ

(m,ζ)
i (·) are the analogues of h

(ζ)
i (·) and τ

(ζ)
i (·),

respectively, when the data generating model obeys (A.2) for i ≥ −m, conditional on the

starting values ς0.

Lemma A.6. Suppose that either Assumption (A1) or Assumption (B1) is satisfied. Ad-

ditionally, assume that Assumption (B2) holds. Then, there exists a compact set K1 ⊆ Φ̄,

which contains φ∗0, such that the following hold for some δ > 0 with K = K1 ×F0
δ :

a) supζ∈K ‖h
(m,ζ)
i − h

(ζ)
i ‖K1 , supζ∈K ‖ḣ

(m,ζ)
i − ḣ

(ζ)
i ‖K1 ,

e.a.s.→ 0 as i→∞;

b) supζ∈K E‖ḧ(ζ)
0 ‖2+d

K1
and supζ∈K E‖τ (ζ)

0 ‖2+d
K1

are finite for some d > 0.

Proof. The proof follows from arguing as in the verifications of Conditions (M1) and (M2)

in Perera and Silvapulle (2020) for the GARCH(p1, p2) setup, with the set Kθ being re-

placed by F0
δ . Sine everything follows after suitable modifications of the arguments already

developed in Perera and Silvapulle (2020), we omit the details.

In view of Notation A above, conditional on (Y1, . . . , Yn), we have

{Y ∗i , h∗i (φ), τ ∗i (φ)} ≡ {Y (0,ζ∗)
i , h

(0,ζ∗)
i (φ), τ

(0,ζ∗)
i (φ)}, φ ∈ Φ, i ∈ N, (A.8)

where ζ∗ = (φ̂, F̌n) for the bootstrap method in Section 3.2, and ζ∗ = (φ̂
†
, F̌n) for the

bootstrap method in Section 4.3 with φ̂
†

given by (19). Similarly, let the bootstrap process

generated by (A.2), conditional on (Y1, . . . , Yn), without any initialization, be defined as

{Y ∗(∞)
i , h

∗(∞)
i (φ), τ

∗(∞)
i (φ)} = {Y (ζ∗)

i , h
(ζ∗)
i (φ), τ

(ζ∗)
i (φ)}, φ ∈ Φ, i ∈ Z, (A.9)
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where ζ∗ = (φ̂, F̌n) and ζ∗ = (φ̂
†
, F̌n) for the bootstraps in Section 3.2 and Section 4.3,

respectively. Thus, {Y ∗(∞)
i , h

∗(∞)
i (φ), τ

∗(∞)
i (φ)} represents a hypothetical (non-operational)

bootstrap process generated by (A.2), without any initialization. Further, let

φ̂
∗(∞)

= arg min
φ∈Φ

n∑
i=1

`
∗(∞)
i (φ), `

∗(∞)
i (φ) = log h

∗(∞)
i (φ) +

{Y ∗(∞)
i }2

h
∗(∞)
i (φ)

,

U∗(∞)
n (y,φ) = n−1/2

n∑
i=1

(
{Y ∗(∞)

i }2

h
∗(∞)
i (φ)

− 1

)
I(Y ∗(∞)

i−1 ≤ y), y ∈ R, φ ∈ Φ.

Since no initialization is used in the bootstrap data generation in (A.9), the marked empirical

process U∗(∞)
n (y, φ̂

∗(∞)
), unlike U∗n(y, φ̂

∗
), is not subject to any initialization error.

The next lemma shows that, conditional on (Y1, . . . , Yn), for the bootstrap method in

Section 3.2, U∗n(y, φ̂
∗
) and U∗(∞)

n (y, φ̂
∗(∞)

) are uniformly close, in probability.

Lemma A.7. Suppose that the assumptions of Theorem 2 are satisfied with φ0 being an

interior point in Φ, or the assumptions of Theorem 3 are satisfied. Then, conditional on

(Y1, . . . , Yn), supy∈R | U∗n(y, φ̂
∗
)− U∗(∞)

n (y, φ̂
∗(∞)

) |= o∗p(1), in probability.

Proof. Assume without loss of generality that Y ∗i ≤ Y
∗(∞)
i . Then, we have

U∗n(y, φ̂
∗
)− U∗(∞)

n (y, φ̂
∗(∞)

)

= n−1/2

n∑
i=1

(
{Y ∗i }2

h∗i (φ̂
∗
)
− {Y ∗(∞)

i }2

h
∗(∞)
i (φ̂

∗(∞)
)

)
I(Y ∗(∞)

i−1 ≤ y)

+ n−1/2

n∑
i=1

(
{Y ∗i }2

h∗i (φ̂
∗
)
− 1

)
I(Y ∗i−1 ≤ y < Y

∗(∞)
i−1 )

= I + II, say. (A.10)

Since Lemma A.6(a) shows that |h∗i (φ̂) − h
∗(∞)
i (φ̂)| e.a.s.→ 0 as i → ∞, from Lemma 2.1 in

Straumann and Mikosch (2006), |{h∗i−1(φ̂)}1/2−{h∗(∞)
i−1 (φ̂)}1/2| e.a.s.→ 0, as i→∞, and hence

from Lemma 2.3 in Straumann and Mikosch (2006), it follows that

|Y ∗i−1 − Y
∗(∞)
i−1 | = |ε∗i−1||{h∗i−1(φ̂)}1/2 − {h∗(∞)

i−1 (φ̂)}1/2| e.a.s.→ 0, as i→∞,

and hence the sum II in (A.10) is of order o∗p(1), in probability, uniformly in y ∈ R.

The first sum in (A.10) is bounded as

|I| ≤ n−1/2

n∑
i=1

∣∣∣∣ {Y ∗i }2

h∗i (φ̂
∗
)
− {Y ∗(∞)

i }2

h
∗(∞)
i (φ̂

∗(∞)
)

∣∣∣∣
≤ n−1/2

n∑
i=1

{Y ∗i }2

∣∣∣∣ 1

h∗i (φ̂
∗
)
− 1

h
∗(∞)
i (φ̂

∗(∞)
)

∣∣∣∣+ n−1/2ω−1
L

n∑
i=1

∣∣{Y ∗i }2 − {Y ∗(∞)
i }2

∣∣
= IA + IB, say.
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Since |{Y ∗i }2−{Y ∗(∞)
i }2| = |ε∗i |2|h∗i (φ̂)−h

∗(∞)
i (φ̂)| e.a.s.→ 0, as i→∞,

∑n
i=1 |{Y ∗i }2−{Y ∗(∞)

i }2|
converges a.s. as n→∞, by Lemma 2.1 in Straumann and Mikosch (2006), and hence sum

IB is of order o∗p(1).

From the proof of Lemma 8 in Perera and Silvapulle (2017), n1/2(φ̂
∗
− φ̂

∗(∞)
) = o∗p(1).

By Lemma A.6, supφ∈K1
|h∗i (φ) − h

∗(∞)
i (φ)| e.a.s.→ 0 for some compact set K1 ⊆ Φ̄. Hence,

Lemma 2.3 in Straumann and Mikosch (2006) yields that sum IA is also of order o∗p(1).

Therefore, supy∈R | U∗n(y, φ̂
∗
)− U∗(∞)

n (y, φ̂
∗(∞)

) |= o∗p(1), in probability.

The next lemma shows that, conditional on (Y1, . . . , Yn), for the bootstrap method in

Section 4.3, U∗n(y, φ̂
∗
) and U∗(∞)

n (y, φ̂
∗(∞)

) are uniformly close, in probability.

Lemma A.8. Suppose that either assumptions of Theorem 4 or Theorem 5 are satisfied. Then,

conditional on {Y1, . . . , Yn}, supy∈R | U∗n(y, φ̂
∗
)− U∗(∞)

n (y, φ̂
∗(∞)

) |= o∗p(1), in probability.

Proof. The proof follows by arguing as in the proof of Lemma A.7 with φ̂ replaced by φ̂
†
.

By Lemmas A.7 and A.8 we obtain that the effect of initialization in the bootstrap data

generation is asymptotically negligible. Hence, in the next section we only focus on U∗n(·, φ̂
∗
).

A.4 Main proofs

This section provides the proofs of the main results stated in the paper.

Proof of Lemma 1. First, partition Un(·, φ̂ ) as follows.

Un(y, φ̂)− Un(y,φ0)

= n−1/2

n∑
i=1

{Y 2
i /hi(φ̂)− Y 2

i /hi(φ0))}I(Yi−1 ≤ y)

= n−1/2

n∑
i=1

ε2
i {hi(φ0)/hi(φ̂)− 1}I(Yi−1 ≤ y)

= n−1/2

n∑
i=1

−ε2
i

(
hi(φ̂)− hi(φ0)

hi(φ0)

)
I(Yi−1 ≤ y) (A.11)

+n−1/2

n∑
i=1

ε2
i

(
hi(φ̂)− hi(φ0)

)( 1

hi(φ0)
− 1

hi(φ̂)

)
I(Yi−1 ≤ y).

Since E(ε2
0) = 1 and n1/2(φ̂ − φ0) = Op(1), by applying Proposition A.1 and the Ergodic

Theorem to the expansion (A.11), we obtain that, uniformly in y ∈ R,

Un(y, φ̂) = Un(y,φ0)− n−1

n∑
i=1

{ε2
in

1/2(φ̂− φ0)′τ i(φ0)}I(Yi−1 ≤ y) + op(1)

= Un(y,φ0)− n1/2(φ̂− φ0)′E[τ 1(φ0)I(Y0 ≤ y)] + op(1).
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For the proof of Theorem 1 we introduce the following additional notation. For d ≥ 1,

let Cd ≡ C([−∞,∞],Rd) denote the space of continuous functions from [−∞,∞] into Rd.

A sequence of d-dimensional stochastic processes (with cadlag paths) is said to be C-tight if

it has associated laws that are tight and whose limit points are concentrated on the set of

continuous paths Cd.

Proof of Theorem 1. From Lemma 1 and (10), we obtain that, uniformly in y ∈ R,

Un(y, φ̂) = Un(y,φ0)

−E[τ ′1(φ0)I(Y0 ≤ y)]Σ−1
n (φ0)n−1/2

n∑
i=1

(ε2
i − 1)τ i(φ0) + op(1). (A.12)

By the Ergodic Theorem (e.g., Theorem 2.5.2 of Giraitis et al., 2012) Σn(φ0)
a.s.→ Σ(φ0), as

n→∞. Hence, by using the above asymptotic uniform expansion of Un(·, φ̂), we derive that

Cov{Un(x, φ̂),Un(y, φ̂)} = K(x, y) + J ′(x,φ0)E[M1(φ0)M ′
1(φ0)]J ′(y,φ0)

−J ′(x,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ y)]

−J ′(y,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ x)] + o(1), x, y ∈ R.

Hence, Cov{Un(x, φ̂),Un(y, φ̂)} = Cov{U0(x),U0(y)}+o(1), x, y ∈ R, where U0 is the centred

Gaussian process in Theorem 1. The convergence of finite dimensional distributions of

Un(·, φ̂) can be derived by e.g. an application of Theorem 18.3 in Billingsley (1999).

To show that Un(y, φ̂) is tight, let G−1(u) := inf{y ∈ R : G(y) ≥ u} and

Ūn(u,φ) := n−1/2

n∑
i=1

{
Y 2
i

hi(φ)
− 1

}
I(Yi−1 ≤ G−1(u)), u ∈ [0, 1], φ ∈ Φ.

Then, by standard quantile representation, we have that Un(y,φ) = Ūn(G(y),φ) for y ∈ R̄.

Let 0 ≤ u1 ≤ u ≤ u2 ≤ 1 be fixed but arbitrary. Set

ai = {ε2
i − 1}I(G−1(u1) < Yi−1 ≤ G−1(u)),

bi = {ε2
i − 1}I(G−1(u) < Yi−1 ≤ G−1(u2)).

Note that E(ai) = E(bi) = 0 and aibi = 0. Further, Ūn(u,φ0) − Ūn(u1,φ0) = n−1/2
∑n

i=1 ai

and Ūn(u2,φ0)− Ūn(u,φ0) = n−1/2
∑n

j=1 bj. Therefore, from Lemma A.5, we obtain that

E[{Ūn(u,φ0)− Ūn(u1,φ0)}{Ūn(u2,φ0)− Ūn(u,φ0)}]

= n−2E{(
n∑
i=1

ai)
2(

n∑
j=1

bj)
2} ≤ [nE(a2

1b
2
1) + 3n(n− 1)E(a2

1)E(b2
1)]/n2

= 3n(n− 1)n−2[E{ε2
1 − 1}2]2(u− u1)(u2 − u)

≤ 3(κε − 1)2(u2 − u1)2.
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Since u1 and u2 are arbitrary, then it follows that Un(·,φ0) is C-tight, e.g. by Theorem 15.7

of Billingsley (1968). Since G is continuous, the last term in (A.12),

E[τ ′1(φ0)I(Y0 ≤ y)]cΣ−1
n (φ0)n−1/2

∑n
i=1 τ i(φ0)%(εi),

is asymptotically C-tight, and hence Un(·, φ̂0) is also asymptotically C-tight. From the latter

fact and the convergence of finite dimensional distributions of Un(·, φ̂) to those of U0(·), it

follows that Un(·, φ̂)
w⇒ U0(·) in D(R), where ‘

w⇒’ denotes weak convergence of processes.

We next state the proof of Theorem 2. In view of Lemmas A.7 and A.8, and the con-

tinuous mapping theorem, the effect of initialization in the bootstrap data generation is

asymptotically negligible. Therefore, in the next proof, and in the sequel, we do not distin-

guish between {Y ∗(∞)
i , h

∗(∞)
i (φ), τ

∗(∞)
i (φ)} in (A.9), and the operational bootstrap process

{Y ∗i , h∗i (φ), τ ∗i (φ)} in (A.8).

Proof of Theorem 2. By extending the arguments of Lemma 1 to a triangular array setup,

we obtain that, conditional on {Y1, . . . , Yn}, uniformly over y ∈ R,

U∗n(y, φ̂
∗
) = U∗n(y, φ̂)− 1

n

n∑
i=1

(ε∗i )
2n1/2(φ̂

∗
− φ̂)′τ ∗i (φ̂)I(Y ∗i−1 ≤ y) + o∗p(1),

= U∗n(y, φ̂)− 1√
n

n∑
i=1

(φ̂
∗
− φ̂)′τ ∗i (φ̂)I(Y ∗i−1 ≤ y) + o∗p(1),

in probability. Since U∗n(y, φ̂) = n−1/2
∑n

i=1(ε∗i − 1)2I(Y ∗i−1 ≤ y), by using Assumption (B3),

for every x, y ∈ R, with x ∧ y := min(x, y), we derive that

cov∗{U∗n(x, φ̂),U∗n(y, φ̂)} = n−1

n∑
i=1

E∗(ε∗i − 1)2I(Y ∗i−1 ≤ x ∧ y)

= (κε − 1)EI(Yi−1 ≤ x ∧ y) + op(1)

= K(x, y) + op(1).

Further, by arguing as for Theorem 1 in a triangular array, we also obtain that

Cov∗{U∗n(x, φ̂
∗
),U∗n(y, φ̂

∗
)} = K(x, y) + g∗(x, y,φ0) + op(1), x, y ∈ R,

where

g∗(x, y,φ0) = J ′(x,φ0)E[M1(φ0)M ′
1(φ0)]J ′(y,φ0)

−J ′(x,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ y)]

−J ′(y,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ x)].
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By using the Cramer-Wold device and a CLT for triangular arrays of row-wise independent

mean zero r.v.’s (e.g., Corollary 3.3.1 of Hall and Heyde, 1980) we obtain that the finite

dimensional distributions of U∗n(·, φ̂
∗
) converge to those of U0, in probability, where U0 is the

centred Gaussian process in Theorem 1. Further, by extending the arguments of Theorem 1

to a triangular array we also obtain that U∗n(·, φ̂
∗
) is asymptotically C-tight. Hence the part 1

follows. The part 2 follows from an application of the continuous mapping theorem. Since

U∗n(·, φ̂
∗
) converges weakly, and n1/2(φ̂

∗
− φ̂) = O∗p(1), in probability, part 3 also holds for

the KS and CvM functional forms.

Proof of Theorem 3. If some components of φ∗0 lie on the boundary of the parameter

space; i.e., φ∗0i = 0 for some i = 2, . . . , p1 + p2 + 1, then the proof follows from arguing

as in the proof of Theorem 5. Hence, here we only consider the case φ∗0 is in the interior

of Φ. Since Assumptions (B1)–(B4) hold, and (φ̂, F̌n)
p→ (φ∗0, F

∗
0 ), except that (φ∗0, F

∗
0 ) is

the pseudo-true value under H1, by arguing as in the proof of Theorem 2, conditional on

{Y1, . . . , Yn}, the process U∗n(·, φ̂
∗
) converges weakly to the centred Gaussian process U †0(·)

specified by the covariance kernel

Cov{U †0(x),U †0(y)} = E({F ∗0
−1(Ui)}2 − 1)2I(Yi−1 ≤ x ∧ y)

+J ′(x,φ∗0)E[Vi(φ0)V ′i (φ
∗
0)]J ′(y,φ∗0)

−J ′(x,φ∗0)E[({F ∗0
−1(Ui)}2 − 1)Vi(φ

∗
0)I(Yi−1 ≤ y)]

−J ′(y,φ∗0)E[({F ∗0
−1(Ui)}2 − 1)Vi(φ

∗
0)I(Yi−1 ≤ x)],

in probability, where U = {Ui, i ∈ Z} are i.i.d. uniform(0,1) random variables,

Vi(φ) := −Σ−1(φ)[1− {F ∗0
−1(Ui)}2]τ i(φ), φ ∈ Φ.

Therefore, it suffices to show that n−1/2|Un(y, φ̂)| = Op(1), for some y ∈ R satisfying As-

sumption (B5). Fix such a y. Under H1, εi = Yi/
√

hi, where hi = E[Y 2
i | Hi−1], i ∈ Z.

Therefore, we have that

n−1/2|Un(y, φ̂)| ≤
∣∣n−1

n∑
i=1

ε2
i hi
[
h−1
i (φ̂)− h−1

i (φ∗0)
]
I(Yi−1 ≤ y)

∣∣
+
∣∣n−1

n∑
i=1

{
ε2
i

(
hi/hi(φ

∗
0)
)
− 1
}
I(Yi−1 ≤ y)

∣∣. (A.13)

Lemma A.4 holds under Assumptions (B1)–(B4), with φ∗0 denoting the pseudo-true value

under H1. Therefore, on the set n1/2‖φ̂− φ∗0‖ ≤ K, the first term on the right hand side of

(A.13) is bounded from the above by ω−1
L n−1

∑n
i=1 Y

2
i

∣∣(φ̂−φ∗0)′τ i(φ
∗
0)
∣∣+ op(n

−1/2) = op(1),

by the Ergodic Theorem, and because φ̂
p→ φ∗0. Since n1/2(φ̂− φ∗0) = Op(1), then by using

an extended Glivenko-Cantelli type argument, we obtain that

n−1/2|Un(y, φ̂)| = |E
(
[h1/h1(y,φ∗0)− 1]I(Y0 ≤ y)

)
|+ op(1), under H1.
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Hence, the proof follows from Assumption (B5).

Proof of Theorem 4. Irrespective of whether φ0 is in the interior or on the boundary of

the parameter space, by arguing as in the proof of Lemma 1, we obtain that

sup
y∈R
| Un(y, φ̂)− Un(y,φ0) + n1/2(φ̂− φ0)′J(y,φ0) |= op(1), (A.14)

with Un(·,φ0) converging weakly to a centred Gaussian process with covariance kernel

K(x, y) = (κε − 1)G(x ∧ y), x, y ∈ R.

To establish the validity of the bootstrap tests we first consider the case φ0 is in the

interior of the parameter space. Since φ̂ is the QMLE in (5),

n1/2(φ̂− φ0) = Zn + op(1), (A.15)

where

Zn := −Σ−1
n (φ0)n−1/2

n∑
i=1

(1− ε2
i )τ i(φ0), Σn(φ) := n−1

n∑
i=1

τ i(φ)τ i(φ)′,

and hence, with the asymptotic uniform expansion of Un(·, φ̂) in (A.14), it follows as in the

proof of Theorem 1 that Un(·, φ̂) converges weakly to U0(·) in D(R), where U0 is the centred

Gaussian process given in Theorem 1.

In the method of bootstrap data generation outlined in Section 4.3 the transformed esti-

mator φ̂
†

plays the role of the true parameter φ0; recall that φ̂
†

= φ̂
†
n = (φ̂

†
n1, . . . , φ̂

†
n(1+p1+p2))

′

where φ̂
†
ni := φ̂niI(φ̂ni > cn), i = 1, 2, . . . , 1+p1 +p2, and (cn) is a non-random sequence with

cn → 0 and n1/2cn →∞ as n→∞. Let Ani = {φ̂ni > cn}, i = 1, 2, . . . , 1+p1 +p2. Since φ0

is an interior point, we have φ0j > 0, j = 1, . . . , 1 + p1 + p2. Further, as cn converges to 0 at

a rate slower than n−1/2 and n1/2(φ̂ − φ0) = Op(1), we obtain that P (∩1+p1+p2
i=1 Ani) → 1 as

n→∞. Since φ̂
†

= φ̂ on the set ∩1+p1+p2
i=1 Ani, then the asymptotic validity of the bootstrap

tests follows from the same arguments used in the proof of Theorem 2.

Next, we consider the validity of the bootstrap tests for the case some components of φ0

lie on the boundary of the parameter space; i.e., φ0i = 0 for some i = 2, . . . , p1 +p2 +1. Since

φ0 is not an interior point, in this case, the limiting behaviour of n1/2(φ̂− φ0) is not linear

as in (A.15), and as in the proof of Theorem 2 of Francq and Zakoian (2007), we obtain

n1/2(φ̂− φ0) = λΛ
n + op(1), λΛ

n := arg inf
λ∈Λ

(Zn − λ)′Σn(φ0)(Zn − λ). (A.16)

The vector λΛ
n is the orthogonal projection of Zn on the convex set Λ for the inner product

〈x, y〉 := x′Σn(φ0)y, and it is characterized by λΛ
n ∈ Λ, 〈Zn−λΛ

n , λ
Λ
n−λ〉 ≥ 0, ∀λ ∈ Λ; see e.g.

Lemma 1.1 in Zarantonello (1971). Thus, by arguing as in the proof of Theorem 2 in Francq
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and Zakoian (2007) we obtain that n1/2(φ̂ − φ0)
d→ λΛ := arg infλ∈Λ(λ − Z)′Σ(φ0)(λ − Z).

Therefore, for a continuous G, the term n1/2(φ̂ − φ0)′J(y,φ0) in (A.14) is asymptotically

C-tight, as is Un(·,φ0) by Lemma 1 and Theorem 1.

Next, consider the bootstrap data generation as outlined in Section 4.3. Since φ̂
†

con-

verges to φ0, a.s., by a triangular array version of the proof of Lemma 1 replacing φ̂ and φ0

by φ̂
∗

and φ̂
†
, respectively, we obtain that conditional on {Y1, . . . , Yn}, uniformly in y ∈ R,

U∗n(y, φ̂
∗
) = U∗n(y, φ̂

†
)− n1/2(φ̂

∗
− φ̂

†
)′J∗(y, φ̂

†
) + o∗p(1), (A.17)

in probability, where

J∗(y,φ) = E∗[τ ∗1(φ)I(Y ∗0 ≤ y)], τ ∗i (φ) :=
(∂/∂φ)h∗i (φ)

h∗i (φ)
, φ ∈ Φ.

Since U∗n(y, φ̂
†
) = n−1/2

∑n
i=1(ε∗i − 1)2I(Y ∗i−1 ≤ y), by using Assumption (B3), for every

x, y ∈ R, with x ∧ y := min(x, y), we obtain that

cov∗{U∗n(x, φ̂
†
),U∗n(y, φ̂

†
)} = n−1

n∑
i=1

E∗(ε∗i − 1)2I(Y ∗i−1 ≤ x ∧ y)

= (κε − 1)EI(Yi−1 ≤ x ∧ y) + op(1)

= cov{Un(x,φ0),Un(y,φ0)}+ op(1). (A.18)

Further, it follows from Assumption (B3) that J∗(y,φ) = E[τ 1(φ)I(Y0 ≤ y)] + op(1).

Therefore, in order to establish that the conditional weak limit of U∗n(·, φ̂
∗
) is the same as

that of Un(·, φ̂), in probability, we need to first show that the conditional limiting distribution

of n1/2(φ̂
∗
− φ̂

†
) is the same as that of n1/2(φ̂− φ0), in probability. To this end, it suffices

to show that, conditional on {Y1, . . . , Yn},

n1/2(φ̂
∗
− φ̂

†
) = λΛ

n + o∗p(1), in probability. (A.19)

In order to obtain (A.19) we consider a triangular array version of the proof of (A.16).

In the proof of (A.16) in Francq and Zakoian (2007), first λΛ
n is represented as the

orthogonal projection of Zn on the convex set Λ, for the inner product 〈x, y〉 := x′Σn(φ0)y,

and then this projection is approximated by that of Zn on the set n1/2(Φ − φ0). Since Φ

contains a hypercube which includes φ0, see (A.1), the set n1/2(Φ − φ0) increases to Λ as

n→∞. This plays a key role in the proof of (A.16). Recall that,

Λ = Λ1 × Λ2 × · · · × Λp1+p2+1,

where Λ1 = R, and for each i = 2, . . . , p1 + p2 + 1, denoting φ0 = (φ01, . . . ,φ0(1+p1+p2))
′,

Λi = R if φ0i 6= 0 and Λi = [0,∞) if φ0i = 0. In order to extend the proof of (A.16) to
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the triangular array setup of the bootstrap data generation, we need to replace φ0 by the

bootstrap true parameter φ̂
†
. However, to ensure that n1/2(Φ− φ̂

†
) increases to Λ, we need

to show that φ̂
†

satisfies two important conditions. First, to allow the hypercube in (A.1)

to contain φ̂
†

with probability converging to one, we need to have

φ̂
†
→ φ0 in probability as n→∞. (A.20)

Further, φ̂
†

should satisfy the following rate of consistency property.

n1/2(φ̂
†
ni − φ0i) =

{
op(1), if φ0i = 0

Op(1), if φ0i > 0
, i = 1, 2, . . . , 1 + p1 + p2. (A.21)

Since at least one component of φ0 is zero, the rate of consistency (A.21) ensures that

n1/2(Φ− φ̂
†
) = n1/2(Φ− φ0)− n1/2(φ† − φ0) converges to Λ in probability.

The consistency of φ̂
†

follows from that of φ̂, and hence (A.20) holds. Since cn converges

to 0 at a rate slower than n−1/2, (A.21) follows by arguing as in the proof of Lemma 1 in

Cavaliere et al. (2021). Hence, by a triangular array extension of the proof of Lemma 2, under

Assumption (A6), we obtain that (A.19) holds, for example by arguing as in the proof of

Proposition 3.2 in Hidalgo and Zaffaroni (2007); see also the discussion under Assumption E2

in Andrews (1997). Therefore, from (A.14)–(A.17), and the asymptotic tightness of U∗n(·, φ̂
†
),

we obtain that the conditional weak limit of U∗n(·, φ̂
∗
) is the same as that of Un(·, φ̂), in

probability. Hence, the continuous mapping theorem yields that the bootstrap test (21)

based on Tj is asymptotically valid (j = 1, 2).

Proof of Theorem 5. If φ∗0 is an interior point, then the proof follows from Theorem 3.

Therefore, we only consider the case some components of φ∗0 lie on the boundary of the

parameter space; i.e., φ∗0i = 0 for some i = 2, . . . , p1 + p2 + 1. Since Assumptions (B1), (B2),

(B3), (B4) and (A6) continue to hold, although (φ∗0, F
∗
0 ) is the pseudo-true value under H1,

by arguing as in the proof of Theorem 4, for every y ∈ R, we have that U∗n(y, φ̂
†
) = O∗p(1),

in probability. Therefore, it suffices to show that n−1/2|Un(y, φ̂)| = Op(1), for some y ∈ R
satisfying E[{h1/h1(φ∗0) − 1}I(Y0 ≤ y)] 6= 0. Fix such a y. Under H1, εi = Yi/

√
hi, where

hi = E[Y 2
i | Hi−1]. Hence, by using Assumptions (B1), (B2), (B3), and (B4), and arguing as

in the proof of Lemma A.4, on the set n1/2‖φ̂−φ∗0‖ ≤ C, where 0 < C <∞, we obtain that∣∣n−1

n∑
i=1

Y 2
i

[
h−1
i (φ̂)− h−1

i (φ∗0)
]
I(Yi−1 ≤ y)

∣∣
≤ ω−1

L n−1

n∑
i=1

Y 2
i

∣∣(φ̂− φ∗0)′τ i(φ
∗
0)
∣∣+ op(n

−1/2).

By the Ergodic Theorem, and because φ̂
p→ φ∗0, the sum in the above upper bound is

op(1), and hence n−1/2|Un(y, φ̂)| is bounded from the above by |n−1
∑n

i=1

{
ε2
i

(
hi/hi(φ

∗
0)
)
−
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1
}
I(Yi−1 ≤ y)| up to a term of order op(1). Since n1/2(φ̂ − φ∗0) = Op(1), then the proof

follows by an extended Glivenko-Cantelli type argument as in the proof of Theorem 3.
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