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Abstract

This note provides several remarks relating to the conditional choice
probability (CCP) based estimation approaches for dynamic discrete-choice
models. Specifically, the Arcidiacono and Miller [2011] estimation proce-
dure relies on the “inverse-CCP” mapping from CCP’s to choice-specific
value functions. Exploiting the convex-analytic structure of discrete choice
models, we discuss two approaches for computing this, using either linear
or convex programming, for models where the utility shocks can follow ar-
bitrary parametric distributions. Furthermore, the inverse-CCP mapping is
generally distinct from the “selection adjustment” term (i.e. the expecta-
tion of the utility shock for the chosen alternative), so that computational
approaches for computing the latter may not be appropriate for computing
inverse-CCP mapping.
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1 Introduction

The conditional-choice probability (CCP) based estimation approaches for dy-

namic discrete-choice models have become well-established in the empirical lit-

erature on dynamic structural models. A crucial step in these procedures involves

computing the “inverse CCP” mapping from choice probabilities to choice-specific

value functions. This is exemplified by the Arcidiacono and Miller [2011] estima-

tion procedure, which relies on knowing or computing the vector valued function

ψ (p) = (ψ1 (p) , . . . , ψJ (p))ᵀ, where p = (p1, . . . , pJ)ᵀ is a choice probability

vector. As these authors point out (cf. Lemma 1 in their paper), for each k the

function ψk satisfies

ψk [p (z)] = V (z)− vk (z) , k = 1, . . . , J,

where z denotes the model state, p (z) := (p1 (z) , . . . , pJ (z))ᵀ the (conditional)

choice probabilities implied by the model, vk, k = 1, . . . , J , are the choice-specific

value functions, and V is the ex ante (or integrated) value function (or “EMAX”

function).1

This note examines this mapping. For the multinomial logit model, it turns out

that

ψk [p (z)] = E [εk| vk (z) ≥ vj (z) all j 6= k] = − log pk (z) .

That is, ψ [p (z)] is equivalent to the expectation of the utility shock corresponding

to the optimal action, which we can interpret as a “selection adjustment” term.

However, as we will see below, this equivalence is more the exception rather than

the rule. Furthermore, it is also not clear how to compute ψ for any assumed

distribution of the utility shocks ε—including, for instance, Gaussian errors, or

errors which may depend on observed covariates or state variables.

In this note we address these questions. We elucidate the interpretation of the

quantity ψ based on the convex-analytic properties of additive random utility mod-

els (ARUMs), following Chiong et al. [2016]. (Dearing [2019] obtains a number
1Other recent papers in the methodological dynamic discrete choice literature have also uti-

lized the ψ function, including Bray [2020] and Kalouptsidi, Kitamura, Lima, and Souza-Rodrigues
[2020]. Fosgerau, Melo, de Palma, and Shum [2020] provide an alternative derivation of ψ based on
a notion of generalized entropy.
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of similar results, but not from a convex-analytic viewpoint.)

Furthermore, utilizing “invariance” results which characterize generalized ex-

treme value (GEV) distributions, we show that ψk [p (z)] only coincides with the

selection adjustment term in special classes of distributions. Hence, computational

approaches for computing the selection adjustment term (see, eg., Aguirregabiria

and Mira [2007]) may not be appropriate for computing ψ.

Based on these properties we provide two general computational approaches

for evaluating ψ for ARUM models with arbitrary error distributions far beyond the

(G)EV family which have been the focus of the existing empirical literature. The

first approach exploits the Mass Transport Estimator developed by Chiong, Gali-

chon, and Shum [2016]. The advantage of this approach is that we can compute

ψ (p) using a combination of approximation and linear programming techniques,

the latter which are well-developed with well-understood convergence properties.

Our second approach relies upon convex programming. Specifically, we show that

ψ (p) can be characterized as the (unique) solution to a strictly concave uncon-

strained programming problem. A consequence of this characterization is that

we may rely upon the highly developed theory and practice for solving convex

minimization problems, such as gradient-based optimization algorithms.2 An ad-

vantage of this method is that the degree of approximation used in obtaining the

surplus does not enter the problem dimension3

2 Review: the DDC framework

In this section we provide a brief background on the structure of empirical dynamic

discrete choice (DDC) models, which leads up to the key Lemma 1 in Arcidiacono

and Miller [2011]. Readers who are familiar with this literature may skip ahead to

the next section.

In each period until T ≤ ∞, an individual chooses among J mutually exclu-

sive actions. Let djt = 1 if action j ∈ {1, . . . , J} is taken at time t and = 0

2See, for example, Nesterov [2018] for a modern introduction to convex optimization.
3Li [2018] considers a convex minimization algorithm to solve the similar problem of “demand

inversion” and illustrates his method in the case of both the Berry, Levinsohn, and Pakes [1995]
random coefficient logit demand model and the Berry and Pakes [2007] pure characteristics model.
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otherwise. The current period payoff for action j at time t depends on the state

zt ∈ {1, . . . , Z}, where zt ≡ (xt, s) where xt is observed but s is unobserved

to the econometrician. We ignore that distinction in this section because it is not

relevant for the agents in the model. If action j is taken at time t, the probability of

zt+1 occurring in period t+ 1 is denoted by fjt (zt+1|zt).

The individual’s current period payoff from choosing j at time t is also af-

fected by a choice-specific shock, εjt, which is revealed to the individual at the

beginning of period t. We assume the vector εt ≡ (ε1t, . . . , εJt)
ᵀ is absolutely

continuous with full support and finite means. The probability distribution of εt
is independently and identically distributed over time and independent of the state

with density function g. We model the individual’s current period payoff for action

j at time t by ujt (zt) + εjt.

The individual takes into account the current period payoff as well as how his

decision today will affect the future. Denoting the discount factor by β ∈ (0, 1),

the individual chooses the vector dt ≡ (d1t, . . . , dJt)
ᵀ to sequentially maximize

the discounted sum of payoffs

E


T∑
t=1

J∑
j=1

βt−1djt [ujt (zt) + εjt]

 , (1)

where the expectation at each period t is taken over the future values of zt+1, . . . , zT

and εt+1, . . . , εT .

Expression (1) is maximized by a Markov decision rule which gives the optimal

action conditional on t, zt, and εt. We denote the optimal decision rule at t as

dot (zt, εt) , with jth element dojt (zt, εt) . The probability of choosing j at time t

conditional on zt, pjt (zt) , is found by taking dojt (zt, εt) and integrating over εt

pjt (zt) ≡
∫
dojt (zt, εt) g (εt) dεt (2)

Denote Vt (zt) , the ex ante value function in period t, as the discounted sum

of expected future payoffs just before εt is revealed and conditional on behaving
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according to the optimal decision rule:

Vt (zt) ≡ E


T∑
τ=t

J∑
j=1

βτ−tdojτ (zτ , ετ ) [ujτ (zτ ) + εjτ ]

 (3)

Given state variables zt and choice j in period t, the expected value function in

period t+ 1, discounted one period into the future, is

β
Z∑

zt+1=1

Vt+1 (zt+1) fjt (zt+1|zt) .

Bellman’s principle implies that the Vt (zt)’s can be recursively expressed as

Vt (zt) = E
{ J∑
j=1

dojt (zt, εt) (4)

×

ujt(zt) + ε+ β
Z∑

zt+1=1

Vt+1 (zt+1) fjt (zt+1|zt)

} (5)

=

J∑
j=1

∫
dojt (zt, εt) (6)

×

ujt (zt) + εjt + β

Z∑
zt+1=1

Vt+1 (zt+1) fjt (zt+1|zt)

 g (εt) dεt (7)

where the second line integrates out the disturbance vector εt. Now we can

define the choice-specific conditional value functions, vjt (zt) , as the flow payoff

of action j without εjt plus the expected future utility conditional on following the

optimal decision rule from period t+ 1 on:

vjt (zt) = ujt (zt) + β
Z∑

zt+1=1

Vt+1 (zt+1) fjt (zt+1|zt) (8)

Given this definition of the choice-specific conditional value function, we can see

that the ex-ante value function Vt (zt) coincides with the social surplus functionW
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defined by

W (v) := Eε
[

max
1≤k≤J

{vk + εtk}
]
, v ∈ RJ , (9)

evaluated at vt (zt).4

2.1 The ψ (inverse-CCP) mapping from Arcidiacono-Miller

Arcidiacono and Miller [2011, Lemma 1] show that the value function Vt (zt) can

expressed as a function of one conditional value function vjt (zt), plus a function

of the conditional choice probabilities pt (zt).

Lemma 1 ([Arcidiacono and Miller, 2011]) Let int ∆ be the set of vectors p ∈
RJ satisfying

∑J
j=1 pj = 1 and pj > 0 for all j. Then there exists a function

ψ : int ∆→ RJ such that

ψk [pt (zt)] ≡ Vt (zt)− vkt (zt) for every k ∈ {1, . . . , J} . (10)

This lemma is a consequence of Hotz and Miller [1993], who established that dif-

ferences in conditional value functions can be expressed as functions of the condi-

tional choice probabilities pt (zt) and the per-period payoffs.

Arcidiacono-Miller’s estimation procedure relies on knowledge or computation

of ψ. They show how to compute this for GEV distributed ε (such as the logit

or nested logit distributions), but it is not clear how to compute this for general

assumed distributions of ε. This note addresses this issue.

3 Interpretation of ψk

The ex-ante value function Vt(zt), as defined in (3) above, arises from evaluating

the convex function W at the vector vt (zt). The ψ function can therefore be inter-

preted in a convex-analytic fashion. These arguments were developed in Chiong

et al. [2016], and we recap them briefly here.
4The surplus function W depends on neither the state nor t due to the assumptions placed on ε.
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3.1 Random Utility and Convex Analysis

Consider a decision maker (DM) making a utility maximizing discrete choice

among alternatives j ∈ {1, . . . , J} The utility of option j is

ṽj = vj + εj , (11)

where v = (v1, . . . , vJ)ᵀ is deterministic and ε = (ε1, . . . , εJ)ᵀ is a vector of

random utility shocks. This is the classic additive random utility model (ARUM)

framework pioneered by McFadden [1978]. Our presentation of the ARUM frame-

work here will emphasize convex-analytic properties which will be important in

drawing connections with Arcidiacono and Miller [2011]’s approach.

Assumption 1 The random vector ε follows a joint distribution with finite means

that is absolutely continuous, independent of v, and fully supported on RJ .5

Assumption 1 leaves the distribution of the ε’s unspecified, thus allowing for

a wide range of choice probability systems far beyond the often used logit model.

Importantly, it accommodates arbitrary correlation in the εi’s across options, which

is reasonable and realistic in applications.

The DM then has choice probabilities

pk(v) ≡ P
(
vk + εk = max

1≤j≤J
{vj + εj}

)
, k = 1, . . . , J.

An important object in this paper is the surplus function of the discrete choice

model [so named by McFadden, 1981]. As it was defined at the end of section 2,

the social surplus function is given by

W (v) = Eε
[

max
1≤j≤J

{vj + εj}
]
. (12)

Under Assumption 1, W is convex and differentiable and the choice probabili-
5Sørensen and Fosgerau [2020] establish minimal conditions that may replace Assumption 1

while retaining uniquely defined conditional choice probabilities, differentiability of the consumer
surplus, and the Williams-Daly-Zachary Theorem.

7



ties p coincide with the derivatives of W :6

∂

∂vk
W (v) = pk(v) for k = 1, . . . , J

or, using vector notation, p (v) = ∇W (v). This is the Williams-Daly-Zachary

theorem, famous in the discrete choice literature [McFadden, 1978, 1981].

Next we introduce the ”selection adjustment” terms, which are the expected

values of the utility shocks for each choice given that the choice is optimally se-

lected. That is, ek (v) ≡ E
[
εk|k = argmax1≤j≤J{ṽj}

]
with e (v) = (e1 (v) , . . . , eJ (v))ᵀ.

Then the social surplus function W can be expressed as a weighted average, where

the choice probabilities are the weights

W (v) =
J∑
j=1

pj (v) [vj + ej (v)] . (13)

Given a choice probability vector p, the conjugate surplus W ∗(p) is defined as

W ∗(p) = sup
v∈RJ

{vᵀp−W (v)}. (14)

Combining (13) with the fact that W (v) + W ∗ (p) = 〈p, v〉 if and only if

p = ∇W (v), we obtain an alternative expression for W ∗ (p (v)) as a choice

probability-weighted sum of expectations of the utility shocks ε:7

W ∗ (p (v)) = −
J∑
j=1

pj (v) ej (v) .

3.2 When does ψk(pt(zt)) coincide with ek(vt(zt))?

For the multinomial logit model, it is well known that ψk(pt(zt)) coincides with

− log pkt(zt), which also happens to be ek(vt(zt)) for k = 1, . . . , J . A natural

question is then: how general is this result?
6The convexity of W follows from the convexity of the max function. Differentiability follows

from the (absolute) continuity of ε. See Shi et al. [2018], Chiong and Shum [2019], and Melo
et al. [2019] for semiparametric econometric approaches based on these convex-analytic properties
of discrete-choice models.

7See Chiong et al. [2016, p. 89].
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It turns out, that the result holds for ARUM models in the GEV family. For non-

GEV models, however, it does not hold in general, as ψ(pt(zt)) may not coincide

with e(vt(zt)). With the normalization W (v0t (zt)) = 0 we obtain

ψk(pt(zt)) = Vt (zt)− v0kt (zt) = W (v0t (zt))− v0kt (zt) = −v0kt (zt)

From this observation it follows that the inner products coincide:

pt(zt)
ᵀet(v

0
t (zt)) = pt(zt)

ᵀψ(pt(zt))

as both sides are equal to the conjugate W ∗(pt(zt)). As noted by Dearing [2019],

this means that et(v0t (zt)) and ψ(pt(zt)) lie on the same hyperplane. However, it

does not imply that et(v0t (zt)) = ψ(pt(zt)).

It turns out, that there is a simple condition that allows one to know when

e(vt(zt)) = ψ(pt(zt)). The result is related to “invariance” as defined in Fosgerau

et al. [2018]. Intuitively, the vector of random utilities ṽ = (ṽ1, . . . , ṽn) has the

invariance property if the distribution of the value of a specific alternative, condi-

tional on that alternative being chosen, is the same, regardless of which alternative

is considered.

To formalize this definition, let ṽj = vj+εj , v̂ = maxj ṽj , and ξ = argmaxj ṽj .

We say that a random vector v has the invariance property, when v̂ and ξ are

statistically independent. This implies that the utility of the chosen alternative is

independent of the index of the chosen alternative.

Proposition 2 If the ARUM satisfies invariance for all ṽ, then

E [εk|ṽk ≥ ṽj all j 6= k] = ψk (p (v)) .

A natural question is which discrete choice models satisfy invariance. From

Fosgerau et al. [2018, Theorem 1] we know that a GEV ARUM has the invariance

property for all v if the random terms have a copula that is twice differentiable

and with positive first order derivatives and where the marginal distributions are

Gumbel with identical scale.

This shows that the finding that ψ(pt(zt)) = e(vt(zt)) for the GEV is a special
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case of the result for ARUM with the invariance property. It is the invariance

property that drives the result.

In Appendix A we discuss an example based on Dearing [2019], which shows

that e(vt(zt)) = ψ(pt(zt)) does not hold in general for all ARUM. In particular, we

exhibit a binary DDC model with normally distributed shocks where e(vt(zt)) 6=
ψ(pt(zt)).

4 Characterization and Computation of ψ

The main issue in applying Lemma 1 is how to compute the function ψ [pt (zt)],

which in general is not known in closed form. In this section we discuss two alter-

native approaches that can be implemented to compute ψ [pt (zt)]. Both methods

work with an arbitrary distribution of the utility shocks ε. This is in contrast to most

of the existing literature, which has focused on the multinomial logit model. First,

based on ideas from Chiong et al. [2016] we show how to computeW ∗(pt(zt)) and

recover the vector vt. Second, following Li [2018], we compute ψ as the solution

to an associated concave maximization problem.

4.1 Two Convex-Analytic Characterizations

Returning to the DDC setting, by Fenchel’s equality and the observation that Vt (zt) =

W (vt (zt)) we know that Vt (zt) + W ∗ (pt (zt)) = pt (zt)
ᵀ vt (zt). This fact im-

plies that

ψj [pt (zt)] = pt (zt)
ᵀ vt (zt)−W ∗ (pt (zt))− vjt (zt) . (15)

For choice probabilities pt(zt), the rationalizing set of utilities vt(zt) is given

by a set of vectors which differ by a common additive constant. For this set of

vectors, the difference W (vt(zt))−vjt(zt) will be constant. The common additive

constant (the factor of indeterminacy) is differenced out in W (vt(zt)) − vjt(zt),

and therefore ψj [pt (zt)] is uniquely determined.

Alternatively, Chiong et al. [2016] characterize the ψ function as the solution

to

max
v
{vᵀp−W (v)} s.t. W (v) = 0. (16)
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In this way, ψ(p) can be interpreted as the vector of choice-specific value functions

that rationalize the observed choice probabilities p, under the normalization that

W (v) = 0.

This is also the normalization from Arcidiacono and Miller [2011] and Dearing

[2019]. In comparison, Hotz and Miller [1993] introduce the Q−1 function, and

Magnac and Thesmar [2002] the q function, which are inverse CCP mappings from

the choice probability simplex to differences in the choice-specific value functions

relative to a benchmark choice: that is, taking the benchmark choice to be j = 1,

these functions map the J−1-vector of choice probabilities {pj(z)}Jj=2 to the J−1

vector of choice-specific value function differences {vj(z)− v1(z)}Jj=2. Clearly,

given the mapping ψ defined using the normalization (16) above, one can obtain

the Q−1 or q mapping by subtracting the component corresponding to j = 1 from

each of the entries.

4.2 Computation Using Linear Programming

This approach derives from Eq. (15). For given choice probability vector pt(zt), we

can use the LP procedure in Chiong et al. [2016] to compute W ∗(pt(zt)). For ease

of exposition we omit the index t and the dependency on zt. To formulate Chiong

et al. [2016]’s procedure, let F be the shock distribution. Let F̂ be a discrete ap-

proximation to the distribution F. Specifically, consider an S -point approximation

to F, where the support is supp(F̂ ) =
{
ε1, . . . , εS

}
. Let PrF̂ (ε = εs) = qs. The

best S -point approximation is such that the support points are equally weighted,

qs = 1/S, that is, the best F̂ is a uniform distribution. Therefore, let F̂ be a uni-

form distribution whose support can be constructed by drawing S points from the

distribution F. By the Glivenko-Cantelli theorem, F̂ converges to F uniformly as

S → ∞. Consequently, the approximation error from discretization can be made

small by making S large. Under these assumptions, and following Chiong et al.

[2016], we can approximate W ∗(p) using the following linear programming for-

mulation
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max
π≥0

∑
j,s

πjsε
s
j (17)

S∑
s=1

πjs = pj ∀j ∈ {1, . . . , J} (18)

J∑
j=1

πjs = qs ∀s ∈ {1, . . . , S} (19)

where πjs is the joint probability of j and s. For this discretized problem, let

Ŵ (v) and Ŵ ∗(p) denote the approximate social surplus and conjugate surplus

respectively. Accordingly, the set of v ∈ ∂Ŵ ∗(p) is the set of vectors v of Lagrange

multipliers corresponding to constraints (18).

In short, for given choice probability vector pt(zt), we can use the LP proce-

dure in Chiong et al. [2016] to compute W ∗(pt(zt)). At the same time, one of the

vectors vt(zt) ∈ ∂Ŵ ∗(pt(zt)) which rationalize pt(zt) can be recovered as the La-

grange multipliers in the LP problem; it doesn’t matter which one. Subsequently,

we can compute ψk using equation (12).

4.3 Computation Using Convex Programming

A second approach to computing ψ via the convex optimization (16), reproduced

here for convenience:

max
v
{vᵀp−W (v)} s.t. W (v) = 0.

We suggest an alternative convex optimization program that automatically incorpo-

rates the constraint (normalization) W (v) = 0 by using the exponentiated surplus

eW rather than the surplus itself.

Proposition 3 The function ψ in Lemma 1 is given by

ψ(p) = argmax
v

{
vᵀp− eW (v)

}
, p ∈ int ∆. (20)
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The solution satisfies W (ψ(p)) = 0 for any p ∈ int ∆.

Some remarks are in order. First, problem (20) is strictly concave, so first-

order conditions are necessary and sufficient to find ψ(p). Second, given the strict

concavity of the program (20), in finding v we can exploit one of the many available

algorithms in the literature of convex optimization problems. Third, if W (v) is

not available in closed form, then it may be approximated using draws from the

distribution of ε.

For static discrete-choice models, Li [2018] uses a convex minimization al-

gorithm (a trust region algorithm) to solve the equivalent problem of minimizing

W (v)−vᵀp and shows that it outperforms the Berry et al. [1995] contraction map-

ping computationally in the case of a random coefficient logit model.

Example 4 The surplus for the multinomial logit model isW (v) = log(
∑J

j=1 evj ).

The first-order condition for a maximum of v 7→ vᵀp− eW (v) is p = ev, which has

solution v = log p.

4.4 Comparing Linear and Convex Programming

Problem (17)–(19) arises from (16) upon replacing the surplus function by an

finitely-generated approximation thereof and expressing the discretized problem

as a linear program. The resulting LP problem amounts to solving a large-scale

optimal assignment problem with dimension equal to the product of the number

alternatives (J) and the number of simulation draws (S). While solvers exist for

large-scale LP problems (say, S in the hundreds of thousands), in practice one’s

computer may run out of memory or experience slow convergence.8 This property

of the LP approach is somewhat unfortunate as one typically wishes to employ a

very large number of draws in order to arrive at a precise surplus approximation.

In contrast, problem (20) recasts the constrained optimization problem (16)

as an unconstrained optimization problem. Even upon replacing the true surplus

function with a finitely-generated approximation, the scale of this optimization
8Similar experience has been noted elsewhere. For example, in discussing LP approaches to

solving optimal assignment problems with type spaces of dimension n, Galichon [2016, pp. 31–32]
notes that: “With n = 5000, the program runs out of memory. Hence, problems of size n greater
than a few thousand should be solved using other algorithms, or using a more powerful machine.”
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problem remains independent of size S of the approximation sample. In fact, since

the approximation sample only enters through the average

Ŵ (v) =
1

S

S∑
s=1

max
1≤j≤J

{vj + εsj}, (21)

one may employ a very large S at essentially no additional computational burden.

Moreover, since Ŵ is differentiable almost everywhere with gradient given by

∂

∂vk
Ŵ (v) =

1

S

S∑
s=1

1
(
k = argmax

1≤j≤J
{vj + εsj}

)
, (22)

one may solve (20) using one of the many available gradient-based optimizers for

unconstrained convex programming. For example, experimenting with Matlab’s

default unconstrained minimization algorithm (fminunc), we arrive at a highly

precise answer within a fraction of a second even when using simulation draws in

the hundreds of thousands. This numerical finding seems especially encouraging

when thinking about CCP inversion as part of an inner loop in a greater estimation

routine. Our experience with the two computational methods indicates that the

convex programming approach is better suited for problems involving more than a

few alternatives.

Remark 5 (On the Number of Simulation Draws) If only a small or moderately

large number of simulation draws S is employed, then our approximation (22) to

a small surplus partial derivative may result in an exact zero, and the resulting

ψ approximation may be poor. This observation pertains to both the linear and

convex programming approaches (as they solve the same problem). We believe this

to be less of an issue for our convex programming approach. Indeed, supposing

that one can easily sample from the ε distribution Fε, one may employ a very

large S at essentially no cost. However, if it difficult to sample from Fε, then one

may consider an alternative approximation to the surplus by means of importance

sampling.
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5 Conclusion

In this note we elucidate the interpretation of the ψ function from Arcidiacono and

Miller [2011] in terms of the convex-analytic properties of dynamic-discrete choice

models. This leads naturally to computational methods which enable researchers

to estimate DDC models in which the error terms can be drawn from distributional

far beyond the usual logit families assumed in the empirical literature. More gen-

erally, the results here highlight the deep connections between the CCP approach

to estimating DDC models and the convex-analytic properties of additive random

utility models, and we believe that further exploration of this connection may yield

additional insights.

A Proofs

Proof of Proposition 2 . Under invariance:

P (εk > t|ṽk ≥ ṽj all j 6= k) = P (vk + εk > vk + t|ξ = k)

= P (v̂ > vk + t|ξ = k)

= P (v̂ > vk + t) ,

and then

E (εk|ṽk ≥ ṽj all j 6= k) = E (ṽk|ξ = k)− vk
= E (v̂|ξ = k)− vk
= E (v̂)− vk
= W (v)− vk

Counterexample. Following Dearing [2019, Appendix B] we show that in general

e(vt(zt)) = ψ(pt(zt)) does not hold. For simplicity, we focus on only one state

and we omit the temporal index t. Consider the binary choice j ∈ {0, 1}, with

vj = uj + εj and the error distribution is εj
i.i.d.∼ N

(
0, 12
)
. Define ṽ = v1 − v0

and ε̃t = ε1 − ε0, where ε̃ ∼ N (0, 1).

It is easy to show that p0 = Pr(j = 0|v) = Φ(−ṽ).We use equation (13) from
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Aguirregabiria and Mira [2007] to derive for j 6= j′

ej(v) ≡ E(εj |vj ≥ vj′) =
V ar(εj)− Cov(εj , εj′)√

V ar(εj − εj′)
φ(Φ−1(pj))

pj

=
φ
(
Φ−1 (pj)

)
2pj

.

Following Dearing [2019], we find that

ψ0(p) = p1Φ
−1 (p1) + φ

(
Φ−1 (p0)

)
ψ1(p) = p0Φ

−1 (p0) + φ
(
Φ−1 (p0)

)
Plugging in (p0, p1) = (0.9, 0.1) gives e (p) = (0.0975, 0.8775) and ψ (p) =

(0.0473, 1.3289).

However e(p) and ψ(p) lie in the same hyperplane. To see this note that the

slope of the line between e(p) and ψ(p) is −0.05/0.45 = −1/9, which coincides

with the negative of p1/p0 = 1/9. So the two points lie in a hyperplane with slope

given by the ratio of choice probabilities, as we expect from the theory. �

Lemma 6 The function Ω : RJ → R defined by

Ω (v) = eW (v), v ∈ RJ , (23)

is strictly convex.

Proof. It is well known thatW has domain equal to RJ with∇W (v) ∈ int ∆, v ∈
RJ . Moreover, it satisfies the homogeneity relationship W (v + αι) = W (v) +

α, α ∈ R, where ι denotes a vector of ones. This relationship makes W linear and,

thus, eW strictly convex in the direction of the diagonal ι. Finally, W is strictly

convex on any hyperplane of the form {v ∈ RJ |vᵀι = c} [Sørensen and Fosgerau,

2020].

It remains to show that eW is strictly convex when moving in any other direc-

tion. So consider v1, v2 ∈ RJ , v1 6= v2 , where
(
v1 − v2

)>
ι 6= 0 and v1 − v2 is

not parallel to ι. Write v1 − v2 = o+ αι, where o
ᵀ
ι = 0. (Note that since v1 − v2

is not parallel to ι, we must have o 6= 0.) Let λ ∈ (0, 1). Then by the homogeneity

property and by strict convexity of W in the direction of vector o,
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W
(
λv1 + (1− λ) v2

)
= W

(
v2 + λo+ λαι

)
= W

(
v2 + λo

)
+ λα

= W
(
λ
(
v2 + o

)
+ (1− λ) v2

)
+ λα

< λW
(
v2 + o

)
+ (1− λ)W

(
v2
)

+ λα

= λW
(
v2 + o+ αι

)
+ (1− λ)W

(
v2
)

= λW
(
v1
)

+ (1− λ)W
(
v2
)
,

and hence also eW is strictly convex.

Proof of Proposition 3. By Lemma 6, Ω defined in (23) is strictly convex. More-

over, Ω is finite and everywhere differentiable. Then Rockafellar [1970, Theorem

26.5] applies, showing that the convex conjugate Ω∗ of Ω is proper, closed, es-

sentially smooth and essentially strictly convex. Moreover, the gradient mapping

∇Ω : RJ → int (dom Ω∗) : x → ∇Ω (x) is a topological isomorphism with

inverse mapping (∇Ω)−1 = ∇Ω∗.

By Norets and Takahashi [2013, Theorem 1], the gradient ∇W (v) has range

equal to int ∆.9 From the properties of ARUM we obtain that

∇Ω (v + αι) = eα∇Ω (v) ,

which implies that∇Ω (v) = Ω (v)∇W (v) has range equal to RJ++.

The convex conjugate Ω∗ of Ω is defined by

Ω∗ (x) = sup
v
{vᵀx− Ω (v)} .

We recognize this as the maximization problem in Proposition 3. The first-order

condition for this problem is x = ∇Ω (v), and a solution exists uniquely for any

x ∈ RJ++ since range ∇Ω = RJ++. Define ψ = ∇Ω∗ = (∇Ω)−1 as the solution

to this problem.

To prove that W (ψ (p)) = 0, write the first-order condition [with x = p and

9Applying standard results from convex analysis, Sørensen and Fosgerau [2020] obtain a more
general result.
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v = ψ (p)] as

p = eW (ψ(p))∇W (ψ (p)) .

Multiply both sides by ι to obtain that

1 = ιᵀp = eW (ψ(p))ιᵀ∇W (ψ (p)) = eW (ψ(p)), (24)

since probabilities sum to one.
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